
An Image-Warping Architecture for VR: Low Latency versus Image Quality
F.A. Smit∗

CWI, Amsterdam
R. van Liere†

CWI, Amsterdam
S. Beck‡

Bauhaus-Universität Weimar
B. Froehlich§

Bauhaus-Universität Weimar

ABSTRACT

Designing low end-to-end latency system architectures for virtual
reality is still an open and challenging problem. We describe the de-
sign, implementation and evaluation of a client-server depth-image
warping architecture that updates and displays the scene graph at
the refresh rate of the display. Our approach works for scenes con-
sisting of dynamic and interactive objects. The end-to-end latency
is minimized as well as smooth object motion generated. However,
this comes at the expense of image quality inherent to warping tech-
niques. We evaluate the architecture and its design trade-offs by
comparing latency and image quality to a conventional rendering
system. Our experience with the system confirms that the approach
facilitates common interaction tasks such as navigation and object
manipulation.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

1 INTRODUCTION

Most current rendering systems used in virtual environments are
scene-graph based. The scene graph consists of several entities re-
quired for rendering, such as cameras, lights and geometric objects,
along with their respective pose matrices and dependencies. The
usual method of operation is to first update the state of the scene
graph based on the most recent input sensor data and then render
the scene out to the display for each application frame. Tracker
sensors usually generate pose updates at 60Hz or more. The display
system operates at a fixed frequency, typically 60Hz, which defines
the optimal frame rate for an application. Rendering, however, can
often not be performed in less than 16.6ms required for a 60Hz up-
date rate. Thus, the scene graph update is constrained by the render
process, and input data arriving at a higher rate than the applica-
tion frame rate is ignored. Rendering at lower frame rates than the
display refresh results in two problems. The end-to-end latency di-
rectly depends on the application frame rate and is therefore high
for low frame rates [9]. Second, because the display is refreshed
at 60Hz, the previous application frame is repeated by the display
until a new one becomes available. This repetition of application
frames results in visually displeasing artifacts for moving objects,
such as judder [1] and jerky motion. Both problems significantly
affect interaction tasks such as navigation and object manipulation.

In this paper, we present an architecture that updates and ren-
ders the scene graph at the display refresh rate. This is achieved
by an image-warping architecture using a parallel client and server
process, which access a shared scene graph (Figure 1). The client
is responsible for generating new application frames at its own
frame rate depending on the scene complexity. The server performs
constant frame rate image warping of the most recent application

∗e-mail: Ferdi.Smit@cwi.nl
†e-mail: Robert.van.Liere@cwi.nl
‡e-mail: Stefan.Beck@medien.uni-weimar.de
§e-mail: Bernd.Froehlich@medien.uni-weimar.de

Figure 1: Overview of the proposed real-time image-warping archi-
tecture. A client and server process run in parallel, where the client
generates new application frames at a fraction of 60Hz (60/N) and
the server produces new display frames at 60Hz. The scene graph
is shared to allow the server access to the latest pose information.

frames, based on the latest state of the scene graph. The central idea
for enabling image warping based on the state of the scene graph
is to tag each pixel in the client rendering process with an object
identification (object ID). This enables the server process to warp
each individual pixel based on the latest pose information from the
corresponding object in the scene graph.

Image warping is an image-based technique that generates
novel views from reference images by performing a per-pixel re-
projection. In this way, the application frames generated by the
client can be transformed and re-projected for new object poses
and camera viewpoints at the server. Since the warping operates
on fixed image sizes (e.g. 1024x768), it results in constant image
update rates and constant latency independent of the scene com-
plexity. However, image warping comes at the expense of some
trade-offs; it can have a negative effect on image quality, such as
sampling artifacts and holes due to missing image information. In
addition, the quality of warped images depends on the distance to
reference images and thus the frame rate of the client render pro-
cess. Furthermore, transferring image buffers from the client to the
server can be time consuming, thereby limiting the amount of data
that can be used.

This paper has a number of important contributions. The pre-
sented architecture incorporates input sensor updates into the scene
graph and the displayed image at the display refresh rate, which
results in the minimal latency achievable through non-predictive
methods. Our investigation of different image-warping methods
show that point-splat warping is currently the fastest method pro-
viding a reasonable image-quality trade-off. It achieves constant
60Hz warping for 1024x768 stereoscopic images when running
client and server on different GPUs. Our single-GPU implemen-
tation runs client and server on the same GPU and relies on the
scheduling of the OpenGL server implementation. By partitioning
the geometry data in small chunks, we achieved that this implemen-
tation also runs at a nearly constant 60Hz for monoscopic images.
An important advantage is that per-pixel data is now shared on the
single GPU and need not be transferred.

From our experience with the implementation, we conclude that
our low latency system running at 60Hz significantly improves the
interactivity, besides eliminating judder and jerky motion. Naviga-

tion and object manipulation particularly benefit from our architec-
ture. In addition, object selection and most system control tasks are
executed at the display refresh rate due to the direct influence of the
latest scene graph state on the warped images.

2 RELATED WORK

Image-based rendering by 3D warping was introduced by McMil-
lan and Bishop [8]. Layered depth images (LDI) [11] is a tech-
nique that combines several depth images from nearby views into
a layered representation in order to reduce occlusion artifacts and
holes. In the context of auto-stereoscopic displays, image-warping
using splatting was used to generate the multiple required shifted
view-points from a single rendered view [3]. A good overview of
many different warping algorithms is given by Mark [6]. Other
approaches have been explored in order to reduce latency for in-
teractive VR-systems. A very common method is to use predictive
Kalman filtering [4] on the received tracker reports prior to the ren-
dering of a new frame. Further examples are the PixelView archi-
tecture proposed by Stewart et al. [15], the Reflex HMD by Kijima
et al. [5], the SLATS system by Olano et al. [10] and the Talisman
architecture by Microsoft [16]. All of these systems either require
special hardware to be used in real-time, impose constraints on the
scenes used for rendering, or were test-bed systems that did not
operate in real-time for realistic resolutions and scenes. Further-
more, the focus of these systems mostly lies on static scenes and
viewpoint changes, with no support for moving objects. Our ap-
proach supports dynamic scenes and operates in real-time at 60Hz
for stereoscopic displays using commodity hardware. Because of
this, we support realistic latency reduction for head-tracking as
well as general 6 DOF input devices in common, practical VR-
environments. A longer overview of related work is given in [13].

In the past years we have implemented an alternative multi-GPU
image-warping architecture [12, 13]. In addition to per-pixel color
and depth information, the client generates a per-pixel 3D mo-
tion field. Using this information, the server performs depth-image
warping to produce updated views of the scene. The motion field is
used to linearly extrapolate the motion of the warped pixels. Image-
warping is performed using simple point-cloud rendering. This ar-
chitecture suffered from a number of drawbacks. A performance
bottleneck was the amount of data (12 bytes per pixel) that needed
to be transferred from client to server. Furthermore, due to the sim-
plified point-cloud rendering, image quality was negatively affected
by warping artifacts. Finally, since only per-pixel color, depth and
motion information was available on the server, the latest input de-
vice poses for objects could not be used, which significantly in-
creased interaction latency. The architecture proposed in this paper
differs in a number of important ways:

• As was shown in Figure 1, the client and server share the
scene graph. Instead of generating and transmitting a motion
field, the client assigns object IDs to all pixels. The server
uses these object IDs to fetch the corresponding object ma-
trix transforms in the scene graph and compute object mo-
tion. An important benefit of this method is that it allows for
object matrices to be re-sampled from the tracking devices at
the server side, allowing for latency reduction at the object
level. An additional advantage is that motion extrapolation
for non-tracked objects can now be performed using general
4x4 matrices instead of 3D vectors, allowing for orientation as
well as position extrapolation. This results in more accurate
motion predictions for these objects. Finally, scene-graph up-
dates that do not require geometry information directly, such
as object selection, can be performed directly at 60Hz by the
server, without waiting for the next client frame.

A practical benefit of sharing the scene graph is that it reduces
the amount of data required to be transmitted to the server: by

Figure 2: Using a second client view in order to reduce occlusion
artifacts in the form of holes. Object A and B are visible in the server’s
projection; however, object B is occluded by object A in the first client
view’s projection, resulting in a hole. By adding a second client view
the occlusion issue can be resolved.

only transmitting per-pixel color, depth and object IDs, the
per-pixel data size is reduced from 12 to 7 bytes. This results
in a 70% performance gain on data transfers.

• The client now generates two views to be warped instead of
only one, resulting in significantly less occlusion artifacts dur-
ing image warping (see Figure 2). In addition, various camera
placement strategies can be used on the client side.

• The image-warping methods have been improved with higher
quality algorithms, using dynamic splat sizes and hole-filling
methods. This reduces the amount of visual artifacts and
improves image quality. Although these algorithms could
also have been implemented on the previous architecture, the
server would not achieve the required frame rate of 60Hz.
However, due to the performance gain on data transfers, the
server can now use higher quality algorithms.

• In addition to a multi-GPU implementation, we show a multi-
threaded single-GPU implementation of the architecture. The
single-GPU implementation has the benefit that no data trans-
fers are required between server and client.

In summary, the proposed architecture provides more accurate
motion extrapolation and update flexibility due to a shared scene
graph, lower latency due to late input device sampling, and sig-
nificantly better image quality due to multiple views and more ad-
vanced image-warping techniques.

3 ARCHITECTURE

The server performs image-warping to generate a transformed and
re-projected server view using images generated by the client. Such
a reprojection has to be generated for every different server view.
For stereoscopic rendering, two warped server views need to be
generated for each client image. The implementation is free to
choose the number of images generated by the client, as well as
the client viewpoints used for this purpose. However, as can be
seen in Figure 2, a minimum of two client views are generally re-
quired to produce a single server view without serious occlusion
artifacts [6]. In the case of two client views, both are warped to the
same server view where the depth buffer handles overlapping pix-
els. This means that for stereoscopic rendering, the server needs to
perform image-warping four times: twice for each of the left- and
right-eye views.

3.1 Client
The purpose of the client is to render images from different view-
points, in such a way that the server can use this data to perform ef-
fective image-warping. We call the data generated by the client for

Figure 3: Schematic overview of warping a client pixel Pxyzw to
the server pixel P′xyzw. Re-sampling of object poses is essentially
achieved through the server’s object-to-world transform. All six re-
quired matrices are concatenated into a single warping matrix for
each different object.

this purpose a client frame. A mechanism is required to synchro-
nize the creation of client frames and the reading of them by the
server. For this purpose we use a synchronized producer-consumer
buffer. The client starts by requesting a free write slot in the buffer
and blocks waiting until it acquired one.

To generate the required data, the client renders the scene from
multiple viewpoints. Our implementation currently uses two view-
points per client frame. At the start of a client frame, the head-
tracker device is sampled to determine the latest camera pose. Since
we assume stereoscopic displays, we can render a left- and a right-
eye view for this camera pose. In order to avoid some clipping at the
borders of the screen after warping, we increase the field-of-view of
the cameras. The eye-separation is also increased in an attempt to
avoid some warping occlusion artifacts. For each viewpoint, the
inverse of the corresponding camera’s projection and modelview
matrices are stored in the buffer slot as Cimg→cam and Ccam→wld , re-
spectively. Next, the scene graph is rendered for each of the view-
points. For every geometric object that is to be rendered, a static
16-bit object ID i is assigned to that object and the inverse of the
corresponding object matrix is stored in an array in the buffer slot
as Ci

wld→ob j . The scene is rendered using a custom shader program
that outputs per-pixel color, depth and object IDs. The pixel’s color
is stored in a 4-component 8-bit BGRA format, where the alpha
component is used for the low eight bits of the object ID. Post-
projection depth information is stored in a 16-bit fixed point integer
format as 216 · z/w. Finally, the high eight bits of the object ID are
stored in a single 8-bit component. This results in a required storage
space of seven bytes per pixel.

3.2 Server
The server starts by polling the producer-consumer buffer in a non-
blocking fashion to determine if a new client frame is available. If
so, the corresponding data is transferred from the client; if not, the
server simply continues using the previously received frame. A ra-
tio is kept that indicates the number of frames the server renders un-
til a new client frame becomes available; for example, if the server
renders three frames for every client frame, this ratio equals 3:1.
Next, a ∆t value can be computed according to the number of times
a new client frame was not available since the last received frame
and the kept ratio. This value is useful for motion extrapolation,
which will be described below. Finally, the server generates a left-
and right-eye stereoscopic view from a newly sampled head-tracker
pose Swld→cam by warping the two client viewpoints for each view
individually.

Suppose that we know the 3D homogeneous coordinates of a
pixel Pxyzw in the client’s post-projection space and the pixel’s cor-
responding object ID i; in that case, it is possible to warp the pixel
to the server’s new viewpoint by first unprojecting the pixel, trans-
forming it back to world-space, applying object transforms and fi-
nally reprojecting it using the server’s camera: P′xyzw = Mi ·Pxyzw,

where Mi equals:

Scam→img ·Swld→cam ·Si
ob j→wld ·Ci

wld→ob j ·Ccam→wld ·Cimg→cam

The matrices denoted by S are the server’s projection, camera and
object matrices, and the ones denoted by C are the client’s corre-
sponding matrices. The procedure is depicted in Figure 3. The ma-
trices Mi are calculated for each object once per server view, and are
then uploaded to the GPU. In this way, a GPU image warping algo-
rithm can warp a pixel by a single 4x4 matrix multiply, where the
required matrix is pre-computed per-object instead of being com-
puted for each pixel. Furthermore, the warping equations are ex-
pressed in terms of general 4x4 homogeneous matrix computations,
allowing for arbitrary transforms to be easily inserted in the warp-
ing pipeline and effortless integration with the standard OpenGL
rendering pipeline.

So far we have not yet mentioned the significance of the server’s
object matrices Si

ob j→wld , nor how they are calculated. If the
server’s object matrix for any particular object is equal to the
client’s object matrix for that object, the object will only appear to
change pose whenever a new client frame becomes available. This
results in non-smooth motion, or judder, and high latency. How-
ever, using image warping, we are free to change the server’s object
matrices as well as it’s camera matrix. This can be done either
by sampling the newest pose from a 6 DOF interaction device, or
by extrapolating object motion when it is not linked to an interac-
tion device. In order to extrapolate object motion, the server keeps
the client’s object matrices for the previous client frame as well as
for the current client frame. Using these two object poses and the
previously calculated ∆t value, we can extrapolate the pose by per-
forming a quaternion spherical linear extrapolation on the rotational
part, and a regular linear extrapolation for the translational part. In
effect, this is a linear prediction. Note, no such prediction is per-
formed for object poses that can be updated in the scene graph at
60Hz.

3.3 Image-warping

Image-warping is performed entirely on the GPU by custom ver-
tex, geometry and fragment shaders. Rendering begins by drawing
a static, screen-aligned grid consisting of a number of evenly spaced
vertices equal to the client’s resolution. There is a one-to-one cor-
respondence between vertices in the grid and pixel-centers in the
client texture. Therefore, per-pixel image warping can be achieved
by transforming the individual vertices in the grid. Each vertex con-
tains the post-projection 2D coordinates Pxy ∈ [−1,1]× [−1,1] of
the corresponding pixel’s center in the client’s texture data. Other
per-vertex information that is available in 2D client textures is the
post-projection depth Pz ∈ (0,1), the object ID i and the pixel’s
color. Furthermore, it is assumed that the homogeneous coordi-
nate Pw = 1. Each vertex is warped to its new location in a ver-
tex shader. First, we fetch the pre-constructed warping matrix Mi

corresponding to the pixel’s object ID from GPU memory with
four texture reads. Since the combination of the pixel’s 2D coor-
dinates and depth results in a valid vertex in post-projection space,
it can be warped easily by pre-multiplying it by the warping matrix:
P′xyzw = Mi ·Pxyzw. Homogeneous or perspective division will occur
later in the OpenGL pipeline, so this P′xyzw can be send directly to
the fragment shader.

Next, we need to determine the projected size of the warped
pixel. Suppose that the depth for a given pixel with coordinates
(x,y) is given by a two-dimensional function z = f (x,y). In that
case, the warp can be seen as a general 2D coordinate transform:
P′xyzw = Mi

4 +Mi
1x+Mi

2y+Mi
3 f (x,y), where Mi

n is the n-th column
of Mi. This follows directly from Mi ·Pxyzw. The expansion factor
of this transform is given by the Jacobian, which is the determinant

of the Jacobian matrix of partial derivatives, after homogeneous di-
vision:

J =
(

∂ (P′x/P′w)/∂x ∂ (P′y/P′w)/∂x
∂ (P′x/P′w)/∂y ∂ (P′y/P′w)/∂y

)

After simplification of the derivatives and substitution by the ele-
ments of P′xyzw, we find that:

J11 =
P′wMi

11−P′xMi
41 +(P′wMi

13−P′xMi
43) ·∂ f (x,y)/∂x

(P′w)2

The other three elements are found through very similar equations.
The partial depth derivatives for f (x,y) can be approximated by us-
ing the depth buffer gradients: ∂ f (x,y)/∂x = (f (x + 1,y)− f (x−
1,y))/2, and so on. This final form is equivalent to the warping
equations used by McMillan [8]; however, the ones here are written
in general 4x4 homogeneous matrix form for easy concatenation
of transforms. In this way, the Jacobian matrix can be computed
quite efficiently in the vertex shader, given that P′xyzw is already
computed.

We have implemented three different warping algorithms that all
use the same warping equation, but vary in the way the warped pix-
els are rendered: a screen aligned point splat, a general quadrilat-
eral splat and a mesh-based reconstruction. The point-splat method
computes the Jacobian matrix as described earlier and then de-
termines a per-pixel splat size S = ceil(max(J11 + J12,J21 + J22)).
This size is set in the vertex shader on a per-pixel basis using the
gl PointSize variable; hence, this method can only render screen
aligned squares of size SxS pixels. The splat size is ceiled to avoid
hole artifacts resulting from discrete splat sizes that are too small to
cover the surface entirely. A drawback is that this generates slightly
thicker edges and overlaps individual splats. A more flexible ap-
proach is the use of a general quadrilateral splat. In this case, the ge-
ometry shader inputs a pixel to be warped and outputs a single quad.
The four vertices of this quad are computed by post-multiplying
the Jacobian matrix by half-pixel offsets (x± 0.5,y± 0.5) of the
warped pixel’s position. This results in less overlap for individual
splats. Note that the previously described discrete point splat size
S is equal to the smallest square completely covering this quad. Fi-
nally, a mesh-based reconstruction similar to the one proposed by
Mark and McMillan [7] treats the grid of pixels as a connected trian-
gle mesh. Each vertex in this grid mesh is warped, and the fragment
shader renders connected triangles accordingly. Because the grid is
completely connected, there is no need to calculate a splat size and
the Jacobian matrix need not be computed.

Finally, a post-processing hole-filling step is applied to the re-
sulting warped image. We set a flag for every destination pixel that
is reached by a warped fragment; every pixel missing this flag is
considered a hole and should be filled. Several hole-filling tech-
niques are available, but many do not scale well to parallel GPU
execution. Therefore, we used a simple scan along the epipolar
camera direction as described by Mark [6]; however, we scan in
both opposite directions and choose the pixel that is furthest away.
This strategy is needed for dynamic scenes where objects as well as
the camera can move, and is somewhat similar to the mesh-based
hole filling strategy proposed earlier by Mark et al. [7, 6]. Hole-
filling issues will be discussed further in Section 6.

3.4 Implementation
We will now describe implementation of the architecture on a a
multi-processing dual-GPU system and a multi-threaded single-
GPU system. For the multi-GPU implementation, the client and
server each run in a separate process using an independent GPU and
each acquires a separate OpenGL context. The client and server are
executed in parallel on a multi-core CPU. The producer-consumer
buffer is implemented using interprocess shared memory. Texture
data is copied from the client GPU into the provided slots in shared

Chunk Size 0.5K 1K 5K 25K 30K 50K
Average (ms) 15.7 15.8 15.8 15.6 16.1 24.7
St.Dev. 1.2 0.9 1.1 1.6 2.3 7.4
Max (ms) 26 20 21 22 32 36

Table 1: The effect of different chunk-sizes in triangles on the client
for a single-GPU warping implementation. The client renders geom-
etry in small chunks to allow the server in-between GPU time. A
chunk size of 1K seems to be the best choice, while for a size of 30K
or higher the server does not get sufficient processing time accord-
ing to the standard deviation. It can also be seen from the maximum
time that the server can not always guarantee 60Hz, so for a small
number of frames it drops back to 30Hz even for good chunk sizes.

.

memory. The server polls the producer-consumer buffer for a new
slot and subsequently uploads the client data to the server GPU
when available.

The single-GPU implementation approach runs both client and
server in different threads where they share the same GPU. The two
OpenGL contexts for the different threads are also shared, such that
OpenGL resources can be accessed from either thread. The CPU
code for client and server is again executed in parallel. In this case,
the slots of the producer-consumer buffer consist of several shared
texture IDs instead of shared memory regions. The client reads a
texture ID from an acquired slot and directly renders into that tex-
ture. The server polls the buffer as before, and directly maps the
read texture ID to the GPU for reading. In this way, the implemen-
tation simply cycles between a number of synchronized texture IDs
controlled by the producer-consumer buffer and never copies tex-
ture data from the GPU into system shared memory. Special care
has to be taken to allow proper scheduling between threads. Since
a single GPU is shared between two threads, the OpenGL driver
and the internal GPU scheduling is responsible for allotting time
slices on the GPU to the client and server threads. In practice, once
a rendering command has been issued to the GPU, such as a large
geometry display list, this command will be completed before any
other command is processed. This means that, in order to allow the
server rendering time for warping, the client’s rendering must be
split into smaller chunks. This is illustrated in Table 1.

4 RESULTS

This section gives an overview of the acquired results using our ar-
chitecture for the frame rate, image quality, observed latency and
single-GPU performance. The multi-GPU architecture was imple-
mented on an Intel Q6600 2.4 Ghz quad-core processor system us-
ing an Nvidia GeForce 8800 GTX for the client GPU and a stereo-
enabled Nvidia Quadro FX5600 for the server GPU. The stereo-
scopic display consists of an iiyama Vision Master Pro 512 22 inch
CRT monitor operating at 120Hz in order to achieve 60Hz per eye.
The single-GPU version was realized on the same system using
only the Nvidia GeForce 8800 GTX. A number of geometric mod-
els are used in this section: a 17M polygon model of a CT-scanned
coral structure, the 13M polygon UNC powerplant model and the
10M polygon Thai Statue model.

Frame Rate As described in Section 3.3, we implemented
three different image-warping algorithms for our architecture: point
splat, quad splat and mesh-based reconstruction. In general, we
found the perceived quality of point splats and quad splats to be
roughly equal, with quad splats showing slightly better quality in
smooth shaded regions. The quality of the mesh-based approach
appeared to be better than either point or quad splats, although it
resulted in slightly too much image blurring. The additional blur
may have given a false sense of better image quality, which is not
equal to the reference. This is illustrated in Figure 4. The server

Figure 4: A quality comparison of a 60x60 pixel close-up from the
17M polygon coral model (top) and the 10M polygon Thai statue
model (bottom). From left to right: point-splat, quad-splat and mesh-
based image warping methods and the direct rendered reference.
Some noise appears for the splat-based methods due to overlapping
splats; however, this is generally not very noticeable when viewed
from a distance. The mesh-based result shows slightly too much
blurring.

640x480 800x600 1024x768 1280x960
Point Splat 217 / 162 142 / 105 87 / 65 55 / 41
Quad Splat 72 / 64 49 / 44 30 / 27 19 / 17
Mesh-based 51 / 48 33 / 31 20 / 19 13 / 12

Table 2: Multi-GPU server frame rate at various resolutions for three
warping algorithms. The server performs image warping four times,
due to the use of two client views and stereoscopic rendering. The
first number refers to frames without data transfers, while the second
is for frames with data transfers.

frame rate of the three algorithms for a stereoscopic multi-GPU im-
plementation is given in Table 2 for various resolutions. Two types
of frames should be distinguished: those where no new client frame
is available and the server can directly warp the previous frame, and
those where a new client frame is available and data needs to be
transferred. The performance for both types of frames is given.

Since our architecture is strictly constrained by a run-time per-
formance of 60Hz, we are primarily interested in the slowest frames
that include data transfers. For a resolution of 1024x768 and two
client views, the amount of pixel data per client frame equals
10.5MB. The current implementation, using the aforementioned
hardware setup, is capable of uploading data from shared memory
to the server GPU at approximately 2.5 GB/s. Therefore, the server
will spend 4.2ms on uploading pixel data to the GPU. Additionally,
for each object in the scene, an object specific 4x4 warping matrix
needs to be uploaded; however, this cost is usually negligible. For
example, the space requirement for 8192 floating point 4x4 matri-
ces is only 0.5MB, corresponding to an additional 0.2ms of transfer
time. Some additional time is spent on constructing the warping
matrices on the CPU, which requires three matrix multiplies and
a matrix extrapolation per object (see Section 3.2). However, the
extrapolation step is not required during frames that require data
transfers because the matrix can be used directly, and additional
time is available in frames without data transfers. Two additional
optimizations are possible but were not implemented. First, the
matrices could possibly be stored using 16-bit floating point, effec-
tively reducing the data size by 50%. Second, since image warping
is performed on the GPU, and the CPU is mostly idle, extrapolation
computations can be performed in parallel on the CPU during the
warping of the previous frame.

For stereoscopic displays and two client viewpoints, the server
needs to perform four image-warpings at 60Hz. This means that the
warping of a single view must be done in less than approximately

0

2

4

6

8

10

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

8
2

9

8
5

2

8
7

5

Ra o 2:1 Ra o 5:1 Ra o 10:1 Ra o 20:1

0

2

4

6

8

10

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

8
2

9

8
5

2

8
7

5

Ra o 2:1 Ra o 5:1 Ra o 10:1 Ra o 20:1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

8
2

9

8
5

2

8
7

5

Ra o 2:1 Ra o 5:1 Ra o 10:1 Ra o 20:1

Figure 6: Percentage of error pixels between a directly rendered ref-
erence frame and a warped frame for various ratios between server
and client frames. From top-to-bottom the results are shown for the
three sample applications: the world-in-hand coral scene, the power-
plant walk-through scene and the dynamic particle scene.

Applications
World-in-hand Walk-through Particle

Ratio Err.% Rel.% Err.% Rel.% Err.% Rel.%
2:1 3.37 x 2.60 x 0.81 x
5:1 3.39 0.63 2.62 0.49 0.86 5.42
10:1 3.54 5.00 2.73 4.91 0.93 13.9
20:1 4.41 30.8 2.91 11.6 1.02 25.3

Table 3: Average percentage of error pixels between reference
and warped frames for the three sample applications for different
server:client ratios, corresponding to Figure 6. The second column
for each application shows the relative increase in error compared to
the 2:1 ratio in percentages.

2.5ms (400 FPS), considering the amount of time required for data
transfers and matrix computations. Table 2 gives an overview of
the final frame rates achieved for various resolutions and warping
algorithms, including data transfers. From this we can deduce that
mesh-based reconstruction is too slow to be practically used cur-
rently, as is quad-based splatting for higher resolutions. Therefore,
for the remainder of this section, we use point splatting only; al-
though, in the future, the other techniques may become feasible.
Using point splatting we can guarantee a 60Hz frame rate for stereo-
scopic resolutions up to 1024x768.

Image Quality For the evaluation of our architecture under
various conditions, we use three sample applications for different
usage scenarios and scenes: a world-in-hand scenario using the
17M polygon coral model, where the model is attached to a 6 DOF
polhemus FastTrak pen-device; a camera walk-through of the pow-
erplant model; and a particle simulation with many moving objects.
In all cases the camera can either be controlled by the mouse, or
by a Logitech acoustic head-tracker. Animations of 900 frames at
60Hz (15 seconds) were recorded for typical interaction sessions

Figure 5: (top) From left to right warped server images are shown for three sample scenes: the world-in-hand coral scene, the walk-through
powerplant scene, and the dynamic particle scene. The first scene is an example of a user inspecting a very large, complex model bound to
an input device; the second, a head-tracked walk-through in a large environment with high-frequency geometry data; the third, a highly dynamic
scene with many moving objects. (bottom) Corresponding error pixels in red compared to a directly rendered reference frame. Errors most
notably appear at the edges of objects and for holes in the warping due to occlusion.

using these applications. For all three scenes a sample warped an-
imation frame is shown in Figure 5 (top). All tracker reports for
the input devices occurred at 60Hz and were recorded to an anima-
tion file in order to replay and capture off-line. For each of the 900
frames of the animation, we capture four images: a reference im-
age obtained through regular stand-alone off-line rendering, a cor-
responding warped image obtained from the server using our archi-
tecture, and the last two client views received by the server. The
two client view images show which images were warped to acquire
the warped frame. This procedure was repeated four times using
simulated server to client frame ratios of 2:1, 5:1, 10:1 and 20:1;
that is, we artificially fixed the client’s frame rate to 30Hz, 12Hz,
6Hz and 3Hz. This is possible because we use off-line rendering
and can run the client and server in a special synchronized mode
where both wait for each other according to a given fixed ratio. In
all cases point splatting was used as the image-warping algorithm.

Given a reference image and a warped image, we can com-
pare them to evaluate warping quality. It is a non-trivial matter to
compare the perceptual difference between two images (this is dis-
cussed further in Section 5). We choose to convert both images to
the Lab perceptual color space and compare them per-pixel. If the
distance in Lab space between two corresponding pixels is larger
than a threshold value of 20 units, the pixel is marked as an error
pixel. This threshold is used to avoid marking small differences that
are hard to perceive as errors. Figure 5 (bottom) shows a sample er-
ror comparison output for three different animation frames, where
the found error pixels are marked in red. Plots of the percentage of
error pixels per frame for the three animations are given in Figure 6.
The average percentages are given in Table 3. Many small errors re-
sult at the edges of objects causing a constant base-line error. This
is a result of the splatting algorithm that has difficulties in determin-
ing the depth buffer gradients at these points, resulting in erroneous
splat sizes. Other errors are mostly caused by wrongly filled holes
caused by occlusion. The plots also clearly show that after receiv-

Reference Application Image-warping Server
N Latency SD FPS Latency SD FPS
1 374.4 15.7 6 57.4 3.0 87/65
2 190.4 9.8 11 58.4 5.4 87/65
4 101.0 7.9 20 54.3 2.6 87/65
8 73.1 5.2 30 56.2 3.6 87/65

16 45.3 1.6 40 53.6 2.8 87/65
32 46.1 1.1 50 50.8 2.6 87/65

Table 4: Latency in ms, standard deviation of latency and frame rate
for a stand-alone stereoscopic reference application and the server
of our multi-GPU stereoscopic image-warping architecture. The ren-
dered scene consists of the 17M polygon coral model, where the
actual rendered number of polygons is divided by the value of N in
the left-most column. The image-warping server is able to maintain
low and constant latency. Server frame rates correspond to Table 2.

ing a client frame the amount of error increases for a number of
frames until a new client frame is received and the error is reduced
again. This behavior is directly related to the server:client frame
ratio and is especially noticeable for the world-in-hand and parti-
cle scenes because these consist largely of moving objects. Client
viewpoints are currently set according to camera poses, so when
objects change pose there is a greater possibility for occlusion arti-
facts during warping. The world-in-hand scene is mostly translated
or still during the first 100 frames; therefore, most occlusion arti-
facts appear only when the object is rotated at a later stage. The
same is true for the particle scene where object velocity increases
over time.

Latency Next, we evaluated the latency for both our image-
warping architectures and a stand-alone regular renderer for refer-
ence using a method introduced by [14]. The scene that was used
consisted of the 17M polygon coral model, attached to the 6 DOF

Server Reference
Polygons Ratio Avg (ms) SD Avg. (ms) SD

1.5M 1:1 15.7 2.3 16.0 0.3
3.0M 2:1 15.8 2.8 32.6 0.6
5.6M 3.8:1 15.9 1.9 49.0 0.3
8.9M 10:1 16.0 1.1 133 0.4

11.6M 19:1 17.1 10.2 226 8.3

Table 5: Comparison between a single-GPU warping architecture
and a stand-alone reference implementation. Both render mono-
scopic images at 800x600 resolution. At a threshold of about 11M
polygons, the server can no longer maintain 60Hz and a large stan-
dard deviation is introduced in the frame rate. However, the server
can maintain a 60Hz frame rate for a larger amount of polygons than
the reference renderer.

input device and rendered at 1024x768 in stereo. To measure the la-
tency under different amounts of rendering load, we also rendered
integers fractions 2, 4, 8, 16 and 32 of the total amount of polygons
in the model. Both the image-warping server and the reference sys-
tem rendered the scene as normal for the left and right eye and then
cleared the display in order to render a small sphere at the position
of the input device for latency measurements. The reference system
sampled the input device just before rendering the scene, while the
server of our architecture re-sampled the input device prior to warp-
ing using the previously described algorithms. The acquired results
are listed in Table 4. This shows the average latency acquired over
15 runs of the experiment, as well as the standard deviation over
those runs. It can be seen that the latency for the image-warping
server is low and almost constant, regardless of the rendering load.
The reference renderer’s latency is much higher and depends on the
frame rate. Also, the standard deviations indicate that the server’s
latency is of a more constant nature. Both low and constant latency
are desirable properties for an interactive system and enable the use
of further predictive filtering methods [10].

Multi-threaded single GPU The performance characteristics
of the single-GPU implementation are somewhat different because
the client and server share the same GPU; therefore, in this par-
ticular case, server performance is not independent of the rendered
scene and depends on client load as well. Therefore, we have to
describe the performance of a single-GPU implementation for spe-
cific numbers of polygons rendered. For a single-GPU we render
at 800x600 monoscopic resolution due to the fact that only half the
processing capability is available. A comparison between a refer-
ence renderer and the single-GPU warping architecture is shown
in Table 5. It can be seen that in practice the system can main-
tain a frame rate of 60Hz for a load of approximately 11M poly-
gons. Once this load is exceeded the server occasionally drops back
to 30Hz, introducing an increased standard deviation in rendering
time. Note, there is no such constraint on the number of polygons
in the case of a multi-GPU implementation.

5 TRADE-OFFS AND LIMITATIONS

An important trade-off is that between image quality and camera
placements. In order to avoid clipping objects that enter the camera
space, the client view should have a larger field-of-view than the
server camera. However, increasing the FOV results in smaller ren-
dered object sizes and fewer warped pixels per object. This effect
is almost equivalent to reducing the client resolution and reduces
the overall quality of warping. Another aspect is that of occlu-
sion; an object that is visible from the server’s viewpoint but not
from either client viewpoint will result in a hole in the rendering.
Since hole-filling algorithms can only partially remedy this prob-
lem, the server should strive to generate as few holes as possible.
This can be achieved by placing the client cameras in such a way

that a large part of the scene is visible from different directions.
However, by doing this the client views will be far away from the
server views, resulting in large required warping distances. In ad-
dition, if a client camera is placed inside an object, or very close to
it, the image it renders is virtually useless. This aspect is very im-
portant in walk-through scenes, and collision detection should be
used to avoid these degenerate camera placements. To overcome
many of these issues, we placed the client cameras relatively close
to the server camera, with slightly larger FOV and eye-separation.
Finally, most previous camera placement strategies [6] were con-
cerned with static scenes only. For dynamic scenes, where objects
as well as the camera can move, there is not always a good client
camera position available. This can be the case if multiple objects
move in opposite directions: in that case there is no simple, uni-
versal camera placement strategy that can guarantee that all objects
will be entirely visible for all frames.

There are also trade-offs between image quality and performance
of the algorithms described in section 3. Different image-warping
methods may result in better perceived quality at the expense of
longer rendering times. For example, three ways to render warped
pixels were discussed: screen-aligned point splats, quadrilateral
splats and and a mesh-based reconstruction method. Point splats
have the highest performance but result in increased sampling arti-
facts, whereas mesh-based reconstruction generally resulted in the
best image quality but was significantly slower. Also, rendering
more than two client views may help to avoid holes. However, since
we desire to guarantee a 60Hz stereoscopic server frame rate, many
of these algorithms are too slow in practice. One could decide that
a frame rate of half the display rate (30Hz) is also acceptable and
consequently use better quality warping algorithms. We do not ad-
vise this approach, as it introduces dynamic artifacts in the form of
judder.

There are a number of interesting trade-offs between a single-
and multi-GPU implementation of the architecture. The benefit of
the single-GPU approach is that client data is shared on the GPU
and does not need to be transferred to the server. This allows us to
almost freely store any amount of data required for warping. An
immediate advantage is that higher precision data can be stored, for
example 32-bit float depth values instead of 16-bit fixed point. An-
other example is that of deferred shading: the single-GPU client
can additionally store per-pixel normals that can be used by the
server to perform shading. In this way, we can not only warp view-
points and object positions at the server at 60Hz, but also dynamic
and view dependent lighting. For a multi-GPU approach this tech-
nique would cause a degradation of performance due to extra data
transfers. Another example of extra data on a single-GPU is the
use of completely different image warping techniques, such as lay-
ered depth-images [11]. This may allow for much better handling
of occlusion artifacts and holes resulting from image-warping. A
less obvious drawback for a single-GPU is that because we only
have half the processing capability available, the client’s rendering
will be slower, even if the server maintains 60Hz. Therefore, the
ratio between server and client frames is increased, resulting in an
increase of warping errors.

A limitation of the proposed architecture is that, due to the na-
ture of the currently used image-warping algorithms, scene trans-
parency can not be handled correctly. For certain simple cases of
transparency this can be resolved by generating one or more ex-
tra depth-layers of per-pixel information on the client, much like
LDIs [11]; however, this is highly inefficient for applications such
as volume rendering using many transparent slices. Another class
of applications that our architecture can not handle easily is that of
deformable objects. While it is possible to warp the pixels belong-
ing to deformable objects, it is difficult to predict the motion and
structural changes of the deforming surface. Since image-warping
is essentially a one-to-one mapping of pixels – even though larger

splats may be comprised of several pixels – topologically changing
surfaces require special attention. It may be possible to assign per-
pixel motion vectors corresponding to the motion of the deformable
surface; however this does not immediately solve the problem of
changing topology and does not handle real-time interactions with
the surface correctly. Another minor problem occurs for objects
that newly appear in the scene: since no previous object matrices
are available, the server is unable to perform extrapolation on the
poses of these objects; however, the re-sampling of an attached in-
put devices is still possible. As of yet, how to best handle volume
rendering and deformable objects in an image-warping architecture
is still an open problem.

6 DISCUSSION

An interesting question is for which scenes our image-warping ar-
chitecture is useful. For scenes containing many more than 10 mil-
lion triangles and a display resolution of only one million pixels, we
run into a sampling problem and thus aliasing occurs. Each pixel
receives contributions from many triangles, which should be inte-
grated above the pixel area. To a certain degree this can be achieved
by over-sampling and anti-aliasing techniques, but for very large
scenes this is not possible. What is needed are output-sensitive and
display-resolution-sensitive techniques, such as occlusion culling
and level-of-detail approaches, which generate triangle sets match-
ing the display resolution. Future graphics hardware is likely to be
able to render such intelligently decimated scenes at 60Hz. How-
ever, the ever increasing shading quality, as well as the compu-
tationally expensive dynamic level-of-detail and occlusion culling
techniques, may limit the frame rate below 60Hz for some time.
Thus, our architecture remains beneficial in all cases where a con-
stant high frame rate and low latency cannot be guaranteed other-
wise.

One aspect that we have not discussed is the method used to
compare image quality between the reference application and our
image-warping architecture. We chose to do a simple frame-by-
frame comparison using a threshold in the Lab perceptual color
space; however, many other ways are possible. Perceptual differ-
ences between images can be obtained using programs such as the
visible differences predictor (VDP) [2]. We experimented with us-
ing VDP for our image comparisons, but found that the reported
differences did not match well to the perceived errors when us-
ing our system. Methods such as VDP often excel for images that
show an amount of random noise that is not perceived as disturb-
ing: VDP will usually not report these pixel difference because they
are hard to perceive. However, in our case we have digitally ac-
quired images that are essentially noise-free. Furthermore, in this
case we are dealing with animations and not still images; therefore,
a different perceptual model, for example one including temporal
frequency sensitivities, should be used. Since accurately predict-
ing perceived differences is so hard, we chose to use a simple and
straight-forward method that can be easily understood. One prob-
lem with the used comparison method is that because of the splat-
ting most object edges are found to be errors, even though these
errors are not very noticeable in practice. Finding a good compar-
ison method for animation sequences that can pin-point disturbing
errors would help a great deal in the further development of real-
time warping systems.

The end-to-end latency of our system is around 50ms, which is
already quite low. We have not yet experimented with using predic-
tion on the tracker data that is fed into the scene graph. Prediction
based on a Kalman [4] filter could be very effective in creating a
system with almost no perceivable latency, which might be a good
trade-off for some image quality in many application domains.

7 CONCLUSION

We have shown a real-time image warping architecture that can be
used to guarantee a 60Hz stereoscopic display rate up to a certain
display resolution on current hardware. In this way, latency was
significantly reduced at the expense of some reduction of image
quality. The architecture works for dynamic scenes and it was il-
lustrated by three sample applications typical to VR. We presented
a single- and a multi-GPU system implementation, and extensively
discussed trade-offs and limitations that we became aware off dur-
ing the development of the architecture. The most desirable hard-
ware design for our approach would be a multi-GPU architecture
with shared memory, which should not be difficult to build, since
each GPU is already a multi-processor. Although we did not per-
form a formal study, users of the architecture were very positive,
especially with respect to the low latency and the improved inter-
activity. We believe that our real-time image-warping architecture
will be an excellent choice for all kinds of interactive graphics ap-
plications dealing with large scenes – at least in the near future.

REFERENCES

[1] P. J. Bex, G. K. Edgar, and A. T. Smith. Multiple images appear when
motion energy detection fails. Journal of Experimental Psychology:
Human Perception and Performance, 21:231–238, 1995.

[2] S. Daly. The visible differences predictor: an algorithm for the as-
sessment of image fidelity. In Digital images and human vision, pages
179–206. MIT Press, 1993.

[3] T. Hübner, Y. Zhang, and R. Pajarola. Multi-view point splatting. In
Proc. ACM GRAPHITE, pages 285–294, 2006.

[4] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. ASME Journal of Basic Engineering Vol. 82, pages 35–45, 1960.

[5] R. Kijima and T. Ojika. Reflex hmd to compensate lag and correction
of derivative deformation. In Proc. IEEE VR, page 172, 2002.

[6] W. R. Mark. Post-Rendering 3D Image Warping: Visibility, Recon-
struction, and Performance for Depth-Image Warping. PhD thesis,
University of North Carolina at Chapel Hill, 1999.

[7] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping.
In Symposium on Interactive 3D Graphics, pages 7–16, 180, 1997.

[8] L. McMillan and G. Bishop. Plenoptic modeling: An image-based
rendering system. Computer Graphics, 29:39–46, 1995.

[9] M. R. Mine. Characterization of end-to-end delays in head-mounted
display systems. Technical report, 1993.

[10] M. Olano, J. Cohen, M. Mine, and G. Bishop. Combatting rendering
latency. In Proc. ACM SI3D, pages 19–ff., 1995.

[11] J. W. Shade, S. J. Gortler, L.-W. He, and R. Szeliski. Layered depth
images. Computer Graphics, 32:231–242, 1998.

[12] F. A. Smit, R. van Liere, and B. Fröhlich. The design and implemen-
tation of a VR-architecture for smooth motion. In Proc. ACM VRST,
pages 153–156, 2007.

[13] F. A. Smit, R. van Liere, and B. Fröhlich. An image warping VR-
architecture: Design, implementation and applications. In Proc. ACM
VRST, pages 115–122, 2008.

[14] A. Steed. A simple method for estimating the latency of interactive,
real-time graphics simulations. In Proc. ACM VRST, pages 123–129,
2008.

[15] J. Stewart, E. P. Bennett, and L. McMillan. Pixelview: a view-
independent graphics rendering architecture. In Proc. ACM HWWS,
pages 75–84, 2004.

[16] J. Torborg and J. T. Kajiya. Talisman: commodity realtime 3D graph-
ics for the PC. In Proc. ACM SIGGRAPH, pages 353–363, 1996.

