Direct Trimming of NURBS Surfaces on the GPU

Andre Schollmeyer*

Bernd Frohlichf

Bauhaus-Universitdt Weimar

Abstract

This paper presents a highly efficient direct trimming technique for
NURBS surfaces, which is applicable to tessellation-based render-
ing as well as ray tracing systems. The central idea is to split the
trim curves into monotonic segments with respect to the two param-
eter dimensions of the surface patches. We use an optimized bisec-
tion method to classify a point with respect to each monotonic trim
curve segment without performing an actual intersection test. Our
hierarchical acceleration structure allows the use of a large number
of such curve segments and performs the bisection method only for
points contained in the bounding boxes of the curve segments.

We have integrated our novel point classification scheme into a
GPU-based NURBS ray casting system and implemented the entire
trimmed NURBS rendering algorithm in a single OpenGL GLSL
shader. The shader can handle surfaces and trim curves of arbi-
trary degrees, which allows the use of original CAD data without
incorporating any approximations. Performance data confirms that
our trimming approach can deal with hundreds of thousands of trim
curves at interactive rates. Our point classification scheme can be
applied to other application domains dealing with complex curved
regions including flood fills, font rendering and vector graphics
mapped on arbitrary surfaces.

CR Categories: 1.3.5 [Computer graphics]: Computational
Geometry and Object Modeling—Curve, surface, solid, and ob-
ject representations 1.3.7 [Computer graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: parametric surfaces, trimmed NURBS, point classifi-
cation, ray casting, root finding, programmable graphics hardware

1 Introduction

Computer Aided Design (CAD) modeling tools are widely used
for the industrial design of models for prototyping and produc-
tion. The standard surface representation within these systems
are trimmed non-uniform rational B-Spline (NURBS) surfaces.
Trimmed NURBS surfaces are capable of compactly describing al-
most any shape and additionally provide local and intuitive control.
These patches are commonly visualized by rendering a triangle-
based approximation (tessellation) on graphic processing units
(GPU), since there is no specialized NURBS rendering hardware
readily available. The process of generating a high-quality tessel-
lation is time consuming, especially for trimmed surfaces requiring

*e-mail:andre.schollmeyer @uni-weimar.de
te-mail:bernd.froehlich@uni-weimar.de

Figure 1: Per-pixel accuracy for arbitrary zoom levels.

fine sampling of the trim boundaries. Recent on-the-fly tessellation
techniques propose trimming approaches for the CPU [Balézs et al.
2004] as well as for the GPU [Guthe et al. 2005]. However, since
they either use mesh-based or texture-based techniques, updates of
these representations are required to maintain pixel-accuracy during
interactive viewpoint manipulations.

In this paper we present a highly efficient direct trimming technique
for NURBS surfaces, which is applicable to tessellation-based ren-
dering as well as ray tracing systems. Trimming is accomplished
by employing the ray-based point-in-curve test with respect to the
NURBS trim curves. Our central idea is to split the trim curves
into monotonic segments such that there is at most a single inter-
section with a horizontal ray. The split points correspond to the
extrema of the trim curves and can easily be found. Within each
single-intersection curve segment we use an optimized bisection
method to classify a point as being inside or outside of the trim re-
gion without performing an actual ray-curve intersection. The set of
monotonic trim curve segments for each patch suggest a two-level
hierarchical acceleration structure, which organizes the entire trim
region into cells containing, in most cases, one trim curve segment
or none at all. During NURBS rendering the acceleration structure
is searched for the cell containing the point to be classified and only
the contained trim curve segments are further considered with our
optimized bisection method.

Common trimming implementations use Bézier Clipping as a ro-
bust technique for finding all the intersections of a ray and a trim
curve. However, Bézier Clipping is originally a recursive tech-
nique, which is difficult to efficiently implement on a GPU. An iter-
ative GPU implementation of Bézier Clipping ([Pabst et al. 2006])
was limited to a small number of curves due to GPU programming
constraints and the lack of an acceleration structure. Furthermore,
Bézier Clipping requires quite a number of computationally non-
trivial steps such as convex hull computations and Bézier polygon
subdivisions. A robust implementation also needs to consider nu-
merous special cases ([Wang et al. 2000; Efremov et al. 2005]).

The main contribution of this paper is a new point classification
scheme for curved regions with holes. We apply this scheme for ef-
ficiently handling a large number of trim curves in real-time render-
ing systems. Our approach does not use any approximations of the
trim curves, nor is the degree of the curves limited. Due to our trim-
curve preprocessing we are able to employ an optimized bisection
method for classifying a point with respect to a bi-monotonic curve
segment. Problematic ray-curve intersection cases such as multi-
ple zeros, minima and maxima are resolved during a preprocessing
step, all of which contribute to the robustness of our method. A
complexity estimation conveys that our classification of a point con-
tained in the bounding box of a trim curve segment requires on aver-

age less than two evaluations of the curve. This estimation was also
empirically confirmed. A comparison reveals that the commonly
employed Bézier Clipping technique is about five times slower than
our technique for the investigated real world examples. However,
due to the precision of our approach, inaccuracies of the actual trim
curve representations may be revealed, which results in pin holes
or cracks along the trim boundary of two adjacent surface patches.
For evaluation purposes, we integrated our trimming method into a
GPU-based ray casting system. The entire rendering algorithm for
trimmed NURBS surfaces is implemented as a single fragment pro-
gram which can handle surfaces and trimming curves of arbitrary
degree. Due to our two-level acceleration structure we achieve in-
teractive frame rates for models containing more than a hundred
thousand trim curves. The efficiency of our approach makes it ap-
plicable to a variety of other domains requiring point classification
with respect to complex curved regions including font rendering,
flood filling, and vector graphics mapped on arbitrary surfaces.

2 Related Work

We provide a short overview of existing rendering techniques for
trimmed NURBS surfaces with a focus on the applied trimming
method. The surface rendering techniques can be classified as
methods based on tessellation or on ray tracing.

Tessellation-based approaches convert the NURBS surface repre-
sentation into a set of triangles. [Rockwood et al. 1989] and [Kumar
and Manocha 1995] use uniform subdivision methods to generate
piece-wise linear approximations of the trimming curves, and use
them as polygonal boundaries for the surface tessellation. [Baldzs
et al. 2004] propose an elevation of the trimming curves into Euclid-
ian space to constrain the error of a piece-wise linear approximation
of the trim curves.

In contrast to these preprocessing-based meshing methods, [Guthe
et al. 2005] adaptively triangulate the NURBS surface on the GPU
and perform the actual trimming task on a per-pixel basis using a
lookup-texture. They generate a texture representation of the trim-
ming area by rendering a polygonal representation of each trim
loop. The resolution of the trim texture representations is adapted
to the resolution of the trimmed surface on the screen and updated
on the fly if necessary. All of these approaches use a polygonal
approximation of the trim curves and a tessellation of the NURBS
surfaces. Furthermore, for high screen resolutions these techniques
need to create an enormous number of triangles and a large num-
ber of high resolution trim textures, both of which may need to
be continuously updated during viewpoint navigation. While these
techniques may produce similar quality images as our approach, we
require significantly less memory on the GPU since only the con-
trol points of the trimming curves and a small acceleration structure
need to be stored and potentially updated during surface editing.

Pioneering work in the field of parametric surface ray tracing [Ka-
jiya 1982; Toth 1985; Joy and Bhetanabhotla 1986] focuses on dif-
ferent ray-surface intersection methods, but does not provide a so-
lution for the trimming problem. [Farouki 1987] was the first to
introduce a set of generalized algorithms for processing trimmed
surfaces. The seminal paper on “Ray Tracing Trimmed Rational
Surface Patches” by [Nishita et al. 1990] presented the Bézier Clip-
ping method as a robust numerical root-finding algorithm, which
can be used for ray-surface intersections as well as for ray-curve
intersections. It exploits the convex hull property of Bézier rep-
resentations and recursively subdivides curve segments containing
potential roots. [Wang et al. 2000] and [Efremov et al. 2005] pro-
posed several enhancements to further improve the stability and ap-
plicability of the Bézier Clipping algorithm.

Several NURBS ray tracing systems, including [Geimer and Abert

2005; Benthin et al. 2004; Efremov et al. 2005], make use of
Bézier Clipping for trimming. [Efremov et al. 2005] utilizes an
adapted version of the ray-casting-based point-in-polygon test for
trim loops. They apply Bézier Clipping for intersecting a ray with
the trim curves. Additionally, a trim loop hierarchy accelerates
the trimming test by avoiding unnecessary intersections. [Benthin
et al. 2004; Geimer and Abert 2005] also use the point-in-polygon
test and Bézier Clipping. They almost reach interactive frame rates
due to the clever use of SIMD extensions and Kd-tree-based accel-
eration structures. However, they only deal with cubic trimming
curves.

[Pabst et al. 2006] presented a GPU-based NURBS ray casting sys-
tem. They provided an iterative formulation of the originally re-
cursive Bézier Clipping algorithm to directly perform the trimming
task on the GPU during fragment processing. However, the system
was limited to a small number of trimming curves of low degree
due to several constraints of current graphics hardware and the lack
of an acceleration structure.

Splitting curves into monotonic segments is used in many works.
The idea of preprocessing curves into bi-monotonic segments was
introduced by [Mudur and Koparkar 1984] for use in an algorithm
for intersecting two planar parametric curves. [Rockwood et al.
1989] split trim curves into monotonic segments to robustly gener-
ate the tessellation of trimmed NURBS patches. For this process,
they also developed their own root finder, which has some simi-
larities to Bézier Clipping. [Keyser et al. 1999] base their MAPC
library for manipulating algebraic curves (e.g. intersecting two
curves) on monotonic segments. They call the process of splitting
a curve into monotonic segments “resolving the curve topology”.
[Qin et al. 2008] split curves into monotonic segments to simplify
distance computations.

3 Trimming Approach

Trimming is a common method to overcome the topological limita-
tion of a rectangular parameter domain. Trimming curves are often
generated by the intersection of two surface patches in 3D space.
These intersection curves are algebraic space curves of very high
degree (e. g. the intersection curve of two bicubic patches is of de-
gree 324). NURBS curves of limited degree (e.g. up to degree
15) are often used as an approximation to these high degree space
curves, which, in general, does not create watertight surfaces along
the trim curves in 3D space. This is because approximating the in-
tersection curve creates two slightly different trim curves on each of
the adjacent surfaces. This problem is well known (e. g. [Song et al.
2004]), but is typically either neglected or camouflaged by drawing
a fat line along the actual trim curve. While our point classification
approach precisely evaluates NURBS-based trim curves, it does not
address these approximation inaccuracies, which may show as pin
holes or cracks along trim curves.

(a) (b)

Figure 2: 2a) The domain of a surface including one outer and
three nested trimming regions and 2b) the resulting surface

Jelo Lo) e [i]:

=)

Figure 3: Even-odd-rule for ray-based point-in-closed-curve test.
Points on the ray shown in red have an even number of intersec-
tions with the trimming curve and lie outside of the trimming region.
Green points are classified as inside.

The actual domain of the parametric surface is defined by sets of
non-intersecting, closed NURBS curves. Nested trimming regions
allow the definition of holes and islands as shown in Figure 2.

Trimming approaches based on rational polynomial representations
of trimming curves commonly use a ray-based point-in-closed-
curve method (“even-odd-rule”) to determine if a particular point
should remain or has to be trimmed (Figure 3). This method has to
compute and count all ray intersections with the trimming curves,
which is basically a root-finding problem. Since trimming curves
can be of high degree, they are sometimes approximated by cubic
segments for this test. In any case, a general root finding method
capable of enumerating all the intersections of a ray and a NURBS
curve must be applied. Bézier Clipping has been the method of
choice in all previous work. However, Bézier Clipping is computa-
tionally expensive and requires treating numerous special cases in
order to avoid numerical problems.

Our idea suggests avoiding the general root-finding problem by
splitting the trimming curves into monotonic segments, which are
guaranteed to have at most one intersection with a ray parallel to
one of the parameter domain axes. This preprocessing step allows
us to use simple root-finding methods at run time, which are ideally
suited to be implemented on the GPU. In addition, the subdivision
also leads to an acceleration structure, which very efficiently deals
with a large number of such trimming curve segments.

3.1 Preprocessing of Trimming Curves

In most systems and CAD data exchange formats, trimming curves
are represented as NURBS curves, which map from their one-
dimensional parameter space ¢ into the two-dimensional (u,v)-
domain of the parametric surface. We transform the NURBS repre-
sentation into its equivalent rational Bézier representation to reduce
the run time computation for evaluating a point on the curve. The
resulting rational Bézier curves are defined by

_ Z?:O wlblBZ"(t)
Z?:o w; B} (t)

with two-dimensional control points b;, scalar weights w; and the
n-th degree Bernstein polynomials

C(t) M

BI'(t) = (?) f1—0"" telo1])

The classification of a point p lying in the (u, v)-parameter domain
of the parametric surface is accomplished by generating a ray orig-
inating at p and intersecting it with the surrounding trim curves. In
general, the intersection of such a ray and a Bézier curve of degree
n may result in up to n intersections. This intersection problem
can be transformed into a root-finding problem of the same degree.
The transformation is greatly simplified by considering only rays
pointing in positive u-direction (v = v,,) as shown in Figure 4a.

This ray r is defined by

r(r) = (Z:) + r((l)>. 3)

For finding the ray-curve intersections with rays parallel to the u-
axis, only the roots of the non-parametric explicit representation of
the v-component of the trimming curve shifted by —v,, have to be
found:

Cu(t) —vp =0 “)

Instead of finding all these roots for each potential point on the
surface patch, we are splitting the non-parametric trim curve C ()
into segments such that each segment contains at most one real root.
To obtain these segments, we apply Rolle’s theorem. When applied
to our context, the theorem says that for continuous, differentiable
functions, real roots are separated by an extremum. Thus, the idea
is to find all the extrema and make use of the fact that real roots only
occur between subsequent extrema of different signs or at the ex-
treme points. This is only valid for continuous functions. Rational
Bézier curves are guaranteed to be continuous within their domain
if their weights remain positive. Figure 4b illustrates that the split
process does not depend on the actual ray coordinates (v = vp)
since they do not affect the location of the extrema. Once the curve
is split into these segments, simple root finders such as the robust
bisection method can be used.

The extrema of the curve C,, (¢) can be found by differentiation and
solving Cy(t) = 0. For non-rational trimming curves the deriva-
tive can be directly determined [Farin 1993]. For rational curves the
non-rational enumerator has to be used as described in [Sederberg
and Wang 1987]. In both cases, the resulting derivative is an inte-
gral explicit polynomial function in Bézier form for which all roots
are to be obtained. While turning points also fulfill C, (t) = 0, they
are not required for finding the roots of the original curve. However,
we also split at the turning points to avoid dealing with an additional
case.

For solving C},(t) = 0 any conventional root-finding algorithm can
be applied. A particular constraint of our problem is that we are
only interested in finding the roots in the interval [0..1]. Bézier
Clipping would work well since it directly considers the interval
boundaries. However, as stated before, a robust implementation of
this algorithm is quite involved. We use a much simpler alternative
based on Rolle’s theorem and recursive differentiation similar to the
approach proposed by [Collins and Loos 1976]. The implementa-
tion only consists of a few lines of code and worked well for all our
real-world data.

Once the extrema of the curve C, (t) are determined it is subdivided
at all locations ¢ satisfying C},(¢) = 0. The resulting monotonic
curve segments are shown in Figure 4d. For splitting a curve at the
extreme points we employ the de Casteljau algorithm.

3.2 Trimming Curve Intersection

Once the curve C, (¢) is split into monotonic segments containing
only single roots, simple root finders can be used to find the roots of
Cy(t) —vp = 0. We will use the bisection method which converges
to a unique root within an interval [a, b], if the function is continu-
ous in [a, b] and the functional values f(a) and f(b) differ in sign.
Even though the bisection method only converges linearly, the algo-
rithm has some major advantages. In contrast to Newton’s method
it is numerically stable and one iteration step only requires a sin-
gle curve evaluation. As the curve’s derivative is not required, the
evaluation can be accomplished using a method similar to the one

b,

y
ob 2

o

Cy

u 0

(b) Explicit function Cy (t) for the v-parameter.

u
b
O.

by 1t

(d) A ray in u-direction will inter-
sect each v-monotonic trimming
curve segment at most once.

b;
(a) A trivial example of a trimming region
consisting of a single trimming curve. br .vl‘)'“ b}
o b ‘
1t
(¢) Explicit function Cy(t) for the u-parameter. (e) For bi-monotonic trimming

curve segments, the optimized
bisection can be applied.

Figure 4: This example illustrates the processing for a single closed trim curve (4a). After the preprocessing steps, we obtain the segments
shown in (4e). The original curve is subdivided at its extrema with respect to v (red colored) and u (blue colored).

UNU,

Figure 5: The naive bisection algorithm.

presented by [Pavlidis 1982], also referred to as the Horner scheme
in Bernstein basis. The algorithm exploits the recursive derivation
of the binomial coefficients and evaluates a Bézier curve of degree
n in O(n) steps by using nested multiplications. The small and
constant number of registers required by Horner’s scheme enables
the evaluation of arbitrary degree curves on GPUs.

As shown in Figure 5, a naive version of our root finder would start
solving C,, (t) = v, by subsequently bisecting a given interval until
the resulting u-interval containing the intersection point is smaller
than a given epsilon. The achieved accuracy of the intersection
point with respect to the curve parameter ¢ is Aty < 2% assuming
that the algorithm started with the interval [0..1] and N iterations
were required. We still have to classify the intersection regarding
the ray direction. The ray intersects the curve in a positive direction
only if u, < un.

The ray-based point-in-closed-curve test only requires the number
of intersections and it does not necessarily require the actual co-
ordinates of the intersection points. Hence, the iteration should
stop once the origin of the ray has been classified as being left or
right of the curve. This can be effortlessly added into the bisec-
tion algorithm if each bisection step can easily calculate the curve’s

u-interval for each subsequent v-interval to be considered. If the
ray origin is not contained in the u-interval, no further bisection is
necessary. For ray origins smaller than the u-interval, there is an
intersection. Otherwise no intersection exists.

Our preprocess splits the curve C,(¢) at the extreme points to
generate monotonic curve segments. These splits also imply v-
monotonic curve segments for C(¢), which contain at most a sin-
gle intersection with a horizontal ray. By additionally splitting
the curve at the extreme points of C,(t), we generate monotonic
curve segments with respect to both directions, v and u. As each
curve segment is now additionally monotonic in u-direction, each
split can directly compute the corresponding u-interval for each v-
interval during the bisection process (see Figure 6a) as described
by [Mudur and Koparkar 1984]. Thus the algorithm can terminate
early for most rays after a small number of iterations /N as shown

Ug Umaz
Umaz
v v
Umin
Umin u
(@ (b)

Figure 6: 6a) Each point on a bi-monotonic curve defines a corner
of the subsegment’s bounding boxes. 6b) Optimized bisection for
bi-monotonic curves. Regions with definite intersections are green
and also show the number of iterations after which the decision was
taken. Non-intersecting regions are marked red.

(a)

B
C
U r .
D
—-
u
(b)

Figure 7: 7a) The end points of the bi-monotonic curve segments create a set of intervals along the v-axis. The endpoints of the original
Bézier curves are shown in white. The curve subdivisions at the curve’s u- and v-extrema are marked in blue and red respectively. 7b) All
curve segments are clipped to the v-intervals created by the bi-monotonic curve segments. These additional curve subdivisions are shown as

green points.

in Figure 6b. In fact, the average number of curve evaluations for
evenly distributed test points within the bounding box of the curve
segment can be easily estimated for a particular case. Assuming
that the v-parameter corresponds to the t-parameter of the curve
(Figure 6b), then the first bisection step classifies half of the area
of the bounding box as being inside or outside with a single curve
evaluation. The next bisection step classifies one quarter of the area
and requires then a total of two evaluations, etc. Thus the average
number of curve evaluations is given by the following sum with NV
being the number of iterations:

N
;§<2 5)

4 Trimming Curve Acceleration Structure

We have shown that trimming curves can be preprocessed in a way
such that the point-in-closed-curve test can be efficiently computed
for a single bi-monotonic curve segment. It requires less than two
curve evaluations on average for points contained in the bounding
box of a curve segment. However, real world models contain up to
hundreds of trimming curves per patch. It is therefore inevitable to
build an acceleration data structure to limit the intersection candi-
dates for a given ray.

The bi-monotonic curve segments generated during the preprocess-
ing stage provide a good starting point for the acceleration structure.
They split the v-axis into a set of intervals as shown in Figure 7a.
Obviously, rays in u-direction only have to test curve segments with
an appropriate v-interval. If such a candidate curve segment is
found, there is a definite intersection of the line corresponding to
the ray and the trimming curve segment contained in the curve seg-
ment’s bounding box. This is due to the fact that all preprocessed
curve segments are v-monotonically increasing. As a result, curve
segments only have to be considered in more detail if the ray’s ori-
gin is contained inside a curve segment’s bounding box. Otherwise,
depending on the actual location of the ray origin, a definite inter-
section is reported if one exists.

The v-intervals generated by the preprocessed curve segments’ end
points imply further splits of other curve segments such that we end
up with curve segments clipped to the given v-intervals as shown in

Figure 7b. This clipping step requires ray-curve segment intersec-
tions, which can be handled by the unoptimized bisectioning algo-
rithm presented in the previous chapter.

Each v-interval encloses a number of curve segments. The minimal

f A
(a) If two curves’ bounding boxes overlap in u-direction both
curves need to be intersected in the inner u-interval (A3).

1y i

(b) At turning points curves are subdivided. As the resulting
segments are in disjoint v-intervals (B, C) and the binary
search will return one v-interval only, incorrect multiple in-
tersections with both curve segments are impossible.

= >
po T pr P2z &

(¢c) The split at the curve’s extrema results in two curve seg-
ments with their according u-intervals (D2, D3). A hori-
zontal ray with different potential starting points po, p1 and
p2 is shown. po is directly classified in interval DI as hav-
ing two intersections. pi1 is classified in interval D2 after
one step of the bisection method. p3 requires two bisection
steps. For each of these starting points the curve segment in
interval D3 is never investigated, since there is one definite
intersection previously found.

Figure 8: This figure shows how the acceleration structure deals
with typically problematic cases such as extrema and turning
points.

\“

(a) (b)

Figure 9: This figure shows the number of required curve evalu-
ations for points inside the trim region (green) and points outside
the trim region (red) for the rim model. Darker colors indicate a
larger number of curve evaluations. Within yellow and blue re-
gions there are no curve evaluations required, due to the accelera-
tion data structure.

and maximal u-coordinates of the bounding boxes of these curve
segments need to be sorted in u-direction, which leads to an or-
dered list of disjoint u-intervals. We assign the number of potential
and definite intersections to each created u-intervals as shown in
Figure 8. Thus, the optimized bisectioning algorithm from the pre-
vious chapter only needs to be triggered for curve segments, where
the ray originates in the curve segment’s bounding box as can be
seen in Figure 6.

The acceleration data structure for each trimmed surface is stored
in a two-level hierarchy. The upper level includes a sorted list of
v-intervals and the boundaries of the entire trimming region. The
list of u-intervals per v-interval constitutes the second level. Each
u-interval entry comprises the number of definite intersections and
a list of curve segments which have to be considered by the bisec-
tioning scheme. The traversal of the acceleration structure for a
point p = (up, vp) (respectively a ray with origin p and pointing in
positive u-direction) is realized as follows:

1. If p lies within the boundaries of the entire trimming region,
find the according v-interval using binary search, otherwise p
is discarded.

2. Find the respective u-interval within the current v-interval by
binary search. Set the number of total intersections to the
number of definite intersections of the found u-interval.

3. Iterate over the wu-interval’s list of potentially intersecting
curve segments. Intersect each curve using the optimized bi-
sectioning method and add the number of found intersections
to the total number of intersections.

4. Classify p using the even-odd-rule based on the total number
of intersections.

The acceleration method scales well with an increasing number of
curves, since we employ two binary searches to find the respective
u-interval. Even further splits of trimming curve segments with
large bounding boxes could be considered to reduce the number
of curve evaluations. The robustness of our point classification
method is a result of the preprocessing. The problematic curve
points such as minima, maxima and turning points (independent
of their multiplicity) are identified during the preprocess and used
to split up the trim curves in single-intersection segments. Since
the bounding boxes of two adjacent curve segments never overlap,
the point classification for an individual point has to deal at most
with either the segment to the left or to the right of an extrema or
turning point — never with both segments. Thus incorrect classifi-
cations of points on rays in the vicinity of extrema or turning points
are avoided.

5 Implementation and Results

While our trimming approach would be also very effective for CPU-
based ray tracing systems, we have focused on an evaluation within
a tessellation-based NURBS rendering system as well as within a
GPU-based NURBS ray casting system. Our trimming algorithm
is implemented as a single fragment program using the OpenGL
API and GLSL. All benchmarks have been performed on an In-
tel(R) Core(TM)2 Quad CPU running at 2.66Ghz with 8GB mem-
ory, two Nvidia GeForce GTX280 in SLI mode and a resolution of
1024x768. Our models were created using direct IGES export from
CATIA V5 without further optimizations.

A preprocessing stage converts all NURBS trimming curves into an
equivalent rational Bézier curve representation. The resulting set
of curves is then split to construct bi-monotonic curve segments,
which are then further clipped to the v-intervals. Table 1 gives an
impression of the number of curves involved when processing a
large model.

preprocessing stage number of curves

original NURBS 125,055
after Bézier conversion 241,186
after splitting at the extrema 271,309
after removing redundancies 215,971
acceleration structure 412,512

Table 1: This table shows the number of trimming curves that are
generated during the preprocessing stage for the VW Beetle model
(Figure 11c). The actual number of necessary splits at the extrema
is quite low. The conversion of NURBS patches into rational Bézier
patches often results in completely trimmed Bézier surfaces, which
are removed along with their trimming curves. Linear trimming
segments in the u-direction are also removed since they cannot be
intersected by a ray in the u-direction.

Our single-pass NURBS ray casting system is based on the ap-
proach proposed by [Pabst et al. 2006]. Our implementation differs
in various aspects and thus we will briefly describe the complete al-
gorithm. Initially, all NURBS surfaces are converted into an equiv-
alent rational Bézier patch representation. The convex hulls are
generated for these patches and passed to the rendering pipeline.
The fragment program generates a ray for each resulting fragment
and intersects it with the parametric surface representation. The
ray-surface intersection is computed using Newton’s method. For
surface evaluations we replaced the de Casteljau algorithm used
in [Pabst et al. 2006] by a Horner-like evaluation method described
by [Sederberg 1995]. Sederberg’s method can be implemented on
the GPU with constant register usage and a complexity of O(n?)
operations, whereas the register usage of the de Casteljau algorithm
depends on the degree of the surface and requires O (n?) operations.

Once a ray-surface intersection is found, the resulting point (up, vp)
in the parameter domain is passed to our trimming algorithm and
classified with respect to the trimming region of the patch. All
fragments classified to be outside the domain of the surface are
discarded. We must point out that the intersection as well as the
trimming algorithm for all surfaces is realized as a single fragment
program. Thus we neither have to limit the degree of the patches
or trimming curves, nor do we need to use lower degree approxi-
mations. Furthermore, this single-pass implementation can be inte-
grated with any rasterization-based rendering system.

We have also implemented a simple tessellation-based NURBS ren-
derer, which uses texture coordinate interpolation to assign a (u, v)-

Figure 10: This figure shows the tessellation of a VW Beetle Cabrio
colored using the interpolated parameter values. The model con-
tains more than 200,000 trimming curve segments. Figure 10a
shows the untrimmed model. Using our trimming algorithm the
frame rate is still above 60Hz (10b).

coordinate to each fragment (Figure 10). The fragment is then pro-
cessed by our trimming approach in a single fragment program as
described for the NURBS ray casting system.

During all benchmarks our application has been parameterized as
follows. If no early classification can be done, the bisection con-
tinues until either the remaining u-interval or the parameter inter-
val reaches floating-point precision, obtaining an error bound of
1-107". Experiments have shown that the actual error bound has
almost no influence on the execution time, since the average num-
ber of iterations is limited by two as shown in Equation 5. Newton’s
method as part of the ray-surface intersection was limited to 5 iter-
ations at most. The convergence threshold is set to 1 - 10™3mm in
object space.

As a first test we measured the performance of our trimming algo-
rithm by rendering tessellated models with an increasing number of
surfaces and trimming curves. The draw times, as shown in Table 2,
suggest that our algorithm is basically limited by the number of
generated fragments and thus is image resolution dependent. With
an increasing number of trimmed surfaces and an almost constant
screen coverage, the draw time increases only slightly. The per-
formance for the close-up of the bumper is further improved as the
coherent texture reads can exploit texture caching hardware. Tests
with alternative root finding algorithms such as the secant method
and regula falsi have shown that though they generally converge
faster, the average number of necessary iterations and therefore
curve evaluations is almost the same. The regula falsi method is
even slower than the bisection method, since it needs to treat special
cases to preserve numerical robustness. The secant method seems
to perform slightly faster than the bisection method, but may suffer
from slow convergence in rare cases.

A direct performance comparison of our results to the trim-texture-
based approach of [Guthe et al. 2005] is challenging due to the im-
plementation complexity of the system and differences in scenes
and parameter choices (e. g. texture size). Guthe et al’s method is
certainly faster for a constant view point, since they only need a
single texture look-up to classify a domain point. However, if the
view point changes trim textures need to be recomputed, which may
cause frame rate drops and intermediate visual artifacts. Our trim
curve representation is view-independent and only needs updates if
control points of surfaces or trimming curves change. This feature
leads to quite constant frame rates in an interactive context. Both
approaches may result in visual artifacts due to the approximative
nature of trim curves. In addition, Guthe et al’s method employs ap-
proximations of the trim curves in early stages of the pipeline, while
we use the curved representation down to the pixel level. The qual-
ity of Guthe et al’s method mainly depends on a given screen space
error, which also defines the required texture size for the discretized
trim curve representations. Thus, memory usage may highly vary

(a) bumper

(¢) VW Beetle

Figure 11: This figure shows the different models used for our test
scenarios. The number of the contained surfaces and trim curves
can be found in Table 3 and 4.

depending on the actual view point, the screen resolution and the
depth complexity of the scene. In contrast, our compact trim curve
data structure including the two-level hierarchy is computed once
for each trimmed surface and the size only depends on the number
of monotonic trimming curve segments.

The iterative Bézier Clipping approach by [Pabst et al. 2006] has
lower memory requirements than our technique, since it simply
uses a plain list of trim curves for each patch. However, the al-
gorithm lacks an acceleration data structure and suffers from cur-
rent GPU programming constraints. On the GPU, the temporary
local storage needs to be a shader-compile-time constant. Bézier
Clipping uses the de Casteljau algorithm to compute intermediate
control polygons. The amount of required auxiliary points during
subdivision as well as the intermediate control polygons depend on
the curve degree. For such an approach the maximum curve de-
gree is limited to about 5 on current graphics hardware. In contrast,
our method only requires one curve evaluation per iteration. The
Horner-like evaluation scheme directly accumulates from texture
look-ups. Thus it has constant register usage and can handle curves
of arbitrary degree.

bumper rim VW Beetle
Bézier patches 380 1,202 53,554
Bézier curves 1,212 5,128 215,971
triangles 11,590 54,464 1,434,808
screen fill 60% 70% 70%
tessellation w/o trimming 0.3 0.6 11.7
tessellation w/ bisection 1.0 2.1 14.2
tessellation w/ secant method 1.0 2.0 14.0
tessellation w/ regula falsi 1.7 33 15.2
ray casting w/ bisection 18.8 105 93.6

Table 2: This table shows the draw times in ms for our trimming
method applied to tessellated NURBS models as well as to a ray
casting approach. The cost for the per-pixel trimming is quite low
and mainly depends on the fill rate. We also evaluated the perfor-
mance of alternative root-finding algorithms such as secant method
and regula falsi as alternatives to the bisection approach.

degree 1 2 3 4 5 >17
bumper 658 4 14 6 88 442
rim 2,275 - 2,853 - -
VW Beetle 84,496 113 14,130 970 110,481 5,711

Table 3: This table shows a degree distribution of the trimming
curves of the models shown in Figure 11.

degree 2 3 4 5 >6 avg.
bumper 20 82 116 94 68 4.5
rim 30 10 10 245 913 5.9

VW Beetle 1,595 3490 1,724 18,810 6,767 53

Table 4: Degree distribution of Bézier surfaces for test models.

For comparison reasons we implemented a CPU-version of the
Bézier Clipping approach for trim curves as well as a CPU-version
of our algorithm. Both approaches were used with bi-monotonic
curve segments and our acceleration data structure to avoid root
finding for points outside the bounding box of a curve segment.
This implementation is not entirely fair towards our algorithm,
since Bézier Clipping usually does not use a curve splitting ap-
proach and has to resolve multiple ray-curve intersections. Nev-
ertheless, Bézier Clipping was about five times slower than our ap-
proach for real-world datasets such as the Beetle model. This result
is based on the classification of a set of evenly distributed (u, v)
point samples in the domain of each trimmed patch of the model.
No actual rendering was performed. [Nishita et al. 1990] reported
an average number of 1.7 iterations for Bézier Clipping. Using our
acceleration data structure it dropped to 1.2. However, each Bézier
Clipping iteration is quite involved including a convex hull gener-
ation, a de Casteljau subdivision and the handling of special cases.
In contrast, our approach only needs one curve evaluation per iter-
ation and typically required about 1.9 iterations for the tested mod-
els. This empirical result also confirms our estimate of an average
of less than 2 iterations, which was derived in Equation 5.

Finally, we evaluated the performance of our complete GPU-based
NURBS ray casting system including the presented trimming al-
gorithm. The ray casting as well as the trimming algorithm deal
with the original Beetle model without the use of any degree reduc-
tions or approximations. Thus, the model includes surfaces of up
to degree 15 and trimming curves of up to degree 13. The perfor-
mance depends highly on the surface degree and image resolution
- more precisely on the number of generated fragments — since the
Bézier surface evaluation within Newton’s method has a complex-
ity of O(n?). The performance is lowest for the rim, which mainly
consists of high degree surfaces.

Figure 12: This figure shows the bumper of a VW Beetle consisting
of 380 Bézier surfaces. The frame rate for both views, the complete
model as well as the close-up view, is about 50Hz. The close-up
view shows the view-independent pixel-accuracy of our algorithm.
The convex hull only consists of 11,590 triangles.

6 Conclusions and Future Work

In this paper we presented a novel point classification method for
curved regions with holes and applied this technique to direct trim-
ming of NURBS surfaces. We demonstrated how to split the orig-
inal trimming curves into segments such that the commonly used
computationally expensive Bézier Clipping method can be replaced
by an adapted bisectioning algorithm. Furthermore, we make use of
the fact that the intersection point for the ray-based point-in-closed-
curve test itself is not necessary. Our optimized bisectioning algo-
rithm requires on average less than two trimming curve evaluations
to classify a point contained in the curve’s bounding box. A highly
adapted acceleration data structure effectively limits the intersec-
tion candidates such that we can deal with complex trimming re-
gions. Our point classification implementation supports trimming
curves of arbitrary degree. It is integrated into a GPU-based sin-
gle pass NURBS ray casting system, which is realized as a single
OpenGL GLSL program. Our experience with the system shows
that complex real-world models can be rendered at interactive frame
rates.

Nevertheless, there is still room for improving the trimming ap-
proach. In particular, the combination with a coarse (u,v)-grid
could avoid unnecessary binary searches in our hierarchical accel-
eration structure. If the lookup into the grid indicates the cell to be
completely inside or outside the trimming domain no further com-
putations have to be done. Otherwise the regular algorithm has to
be used. Furthermore, we could further split the trimming curves
to reach a statistically optimal computation time for the point-in-
close curve test under the assumption of an even distribution of the
point tests over the (u, v)-domain. The cost for a trimming curve
evaluation is dominated by the number of texture fetches of the co-
efficients and thus known during the preprocessing phase. Since we
know that we need on average about two curve segment evaluations
for points in the bounding box of a curve segment, the overall influ-
ence on the number of texture fetches by introducing a split can be
computed. The binary searches also need to be considered in this
cost function. Their cost is dominated by the lookup of the v- and
u-interval boundaries. Thus an optimization of the overall cost will
create an optimal split of the trim curve segments under the given
assumptions.

As pointed out by [Song et al. 2004], it is a hopeless task to exactly
represent the intersection of two NURBS patches. This exactness is
not essential for most applications, provided that trimmed surfaces
agree exactly along approximate intersection curves without gaps
or overlaps between them. They suggest control point perturbation
schemes to enforce watertight patch intersections. However, this
suggestion has not yet found its way into classical CAD systems
as we found out: with large magnifications of adjacent trimmed
patches, we sometimes find small pinholes along the trim curves
or with even larger magnifications, gaps occur. While this prob-
lem should be resolved within the CAD systems, it could be also
handled by the rendering system. One could even allow the user to
switch between the two visualizations.

The most important next step is the integration of our approach into
a CAD system. The small acceleration data structure can be gen-
erated and downloaded into the graphics card on the fly while trim
curves are manipulated. Thus, the system can always deal with a
pixel-precise representation of the trimming curves. For a large
number of NURBS patches the performance of our ray-casting-
based surface rendering algorithm is still limited on current GPUs,
but the addition of occlusion culling techniques and the use of an
early-ray termination test will significantly improve performance
for scenes with medium to high depth complexity. We are con-
vinced that direct GPU-based rendering of trimmed NURBS sur-
faces is a worthwhile alternative to the current tessellation-based

rendering pipeline. Trimming is just one, albeit very useful, appli-
cation of our point classification technique. It could also be used for
other applications where point classification with respect to curved
regions with holes is required, including collision detection, stencil-
ing, flood fills and vector graphics mapped onto arbitrary surfaces.

Acknowledgements

We thank Hans Pabst and Jan P. Springer for the many discussions
during the early phase of this work and the Siggraph reviewers for
their constructive feedback. The VW New Beetle model is courtesy
of Volkswagen AG. The rim model is courtesy of Daimler AG.

References

BALAZS, A., GUTHE, M., AND KLEIN, R. 2004. Efficient
trimmed nurbs tessellation. Journal of WSCG 12, 1 (Feb.), 27—
33.

BENTHIN, C., WALD, 1., AND SLUSALLEK, P. 2004. Real-time
rendering: Interactive ray tracing of free-form surfaces. In AFRI-
GRAPH ’04: Proceedings of the 3rd International Conference
on Computer Graphics, Virtual Reality, Visualisation and Inter-
action in Africa, 99-106.

COLLINS, G. E., AND L00s, R. 1976. Polynomial real root iso-
lation by differentiation. In SYMSAC ’76: Proceedings of the
third ACM Symposium on Symbolic and Algebraic Computation,
ACM, New York, NY, USA, 15-25.

EFREMOV, A., HAVRAN, V., AND SEIDEL, H.-P. 2005. Robust
and numerically stable bézier clipping method for ray tracing
nurbs surfaces. In SCCG ’05: Proceedings of the 21st Spring
Conference on Computer Graphics, ACM, New York, NY, USA,
127-135.

FARIN, G. 1993. Curves and Surfaces for Computer Aided Ge-
ometric Design (3rd ed.): A practical guide. Academic Press
Professional, Inc., San Diego, CA, USA.

FAROUKI, R. T. 1987. Trimmed-surface algorithms for the eval-
uation and interrogation of solid boundary representations. /BM
J. Res. Dev. 31, 3, 314-334.

GEIMER, M., AND ABERT, O. 2005. Interactive ray tracing of
trimmed bicubic bézier surfaces without triangulation. In Pro-
ceedings of WSCG, T71-78.

GUTHE, M., BALAzS, A., AND KLEIN, R. 2005. Gpu-based
trimming and tessellation of nurbs and t-spline surfaces. In ACM
SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 1016—
1023.

Joy, K. I., AND BHETANABHOTLA, M. N. 1986. Ray tracing
parametric surface patches utilizing numerical techniques and
ray coherence. In SIGGRAPH ’86: Proceedings of the 13th An-
nual Conference on Computer Graphics and Interactive Tech-
niques, ACM, New York, NY, USA, 279-285.

KAya, J. T. 1982. Ray tracing parametric patches. SIGGRAPH
Comput. Graph. 16, 3, 245-254.

KEYSER, J., CULVER, T., MANOCHA, D., AND KRISHNAN, S.
1999. Mapc: a library for efficient and exact manipulation of
algebraic points and curves. In SCG "99: Proceedings of the Fif-
teenth Annual Symposium on Computational Geometry, ACM,
New York, NY, USA, 360-369.

KUMAR, S., AND MANOCHA, D. 1995. Efficient rendering of
trimmed NURBS surfaces. Computer-Aided Design 27,7, 509—
521.

MUDUR, S., AND KOPARKAR, P. 1984. Interval methods for
processing geometric objects. IEEE Comput. Graph. Appl. 4, 2,
7-17.

NISHITA, T., SEDERBERG, T. W., AND KAKIMOTO, M. 1990.
Ray tracing trimmed rational surface patches. In SIGGRAPH
’90: Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, ACM, New York, NY,
USA, 337-345.

PABST, H.-F., SPRINGER, J., SCHOLLMEYER, A., LENHARDT,
R., LESSIG, C., AND FROEHLICH, B. 2006. Ray casting of
trimmed nurbs surfaces on the gpu. Symposium on Interactive
Ray Tracing, 151-160.

PavLIDIS, T. 1982. Algorithms for Graphics and Image Process-
ing. Computer Science Press, Rockville, Maryland.

QIN, Z., McCooL, M. D., AND KAPLAN, C. 2008. Precise vector
textures for real-time 3d rendering. In SI3D "08: Proceedings of
the 2008 Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, 199-206.

ROCKWOOD, A., HEATON, K., AND DAvVIS, T. 1989. Real-time
rendering of trimmed surfaces. In SIGGRAPH ’89: Proceed-
ings of the 16th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA, 107-116.

SEDERBERG, T. W., AND WANG, X. 1987. Rational hodographs.
Computer Aided Geometric Design 4, 4 (Dec.), 333-335.

SEDERBERG, T. W. 1995. Point and tangent computation of ten-
sor product rational bézier surfaces. Computer Aided Geometric
Design 12, 1, 103-106.

SONG, X., SEDERBERG, T. W., ZHENG, J., FAROUKI, R. T.,
AND HASS, J. 2004. Linear perturbation methods for topo-
logically consistent representations of free-form surface inter-
sections. Computer Aided Geometric Design 21, 3, 303-319.

ToTH, D. L. 1985. On ray tracing parametric surfaces. SIGGRAPH
Computer Graphics 19, 3, 171-179.

WANG, S.-W., SHIH, Z.-C., AND CHANG, R.-C. 2000. An im-
proved rendering technique for ray tracing bézier and b-spline
surfaces. The Journal of Visualization and Computer Animation
11,4 (Sept.), 209-219.

