
G. Bebis et al. (Eds.): ISVC 2009, Part I, LNCS 5875, pp. 644–655, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reducing Artifacts between Adjacent Bricks in
Multi-resolution Volume Rendering

Rhadamés Carmona1, Gabriel Rodríguez1, and Bernd Fröhlich2

1 Universidad Central de Venezuela, Centro de Computación Gráfica,
1041-A, Caracas- Venezuela

rhadames.carmona@ciens.ucv.ve, gaborodriguez@gmail.com
2 Bauhaus-Universität Weimar, Fakultät Medien, 99423 Weimar, Germany

bernd.froehlich@uni-weimar.de

Abstract. Multi-resolution techniques are commonly used to render volumetric
datasets exceeding the memory size of the graphics board, or even the main
memory. For these techniques the appropriate level of detail for each volume
area is chosen according to various criteria including the graphics memory size.
While the multi-resolution scheme deals with the memory limitation, distracting
rendering artifacts become noticeable between adjacent bricks of different lev-
els of detail. A number of approaches have been presented to reduce these arti-
facts at brick boundaries, including replicating or interpolating data between
adjacent bricks, and inter-block interpolation. However, a visible difference in
rendering quality around the boundary remained, which draws the attention of
the users to these regions. Our ray casting approach completely removes these
artifacts by GPU-based blending of contiguous levels of detail, which considers
all the neighbors of a brick and their level of detail.

1 Introduction

During the past years multi-resolution hardware-accelerated volume rendering has
been an important research topic in the scientific visualization domain. Due to the
progressive improvements of imaging devices such as tomographs and magnetic
resonators, the size of volume datasets continuously increases. Such datasets often
exceed the available memory of graphics processing units (GPU), and thus multi-
resolution techniques need to be employed to guarantee interactive frame rates for
GPU-based rendering approaches. Out-of-core techniques are required for even larger
datasets exceeding the main memory capabilities of regular desktop computers, which
are generated e.g. by scientific projects such as the visible human ® [1] and the time-
dependent turbulence simulation of Richtmyer-Meshkov [2].

While multi-resolution approaches in combination with out-of-core techniques deal
with the memory limitations, distracting rendering artifacts between adjacent blocks
of different level of detail occur (see Fig. 1). The source of these visual artifacts is the
interpolation process since coarser data generates different samples during interpola-
tion, which may be mapped to different colors by classification and during integration
along the ray. The presence of these kinds of artifacts in the resulting image subcon-
sciously draws the attention of the user to these regions of the volume instead of al-
lowing the user to focus on the actual data.

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 645

Fig. 1. Angiography dataset with aneurism. Images have been generated by using (a) 30MB of
texture memory and (b) 4 MB of texture memory. In both cases, disturbing artifacts are notice-
able at levels of detail transitions.

We developed an approach for effectively removing the rendering artifacts related
to the quality difference between adjacent bricks of different level of detail. The
bricks of the current cut through the octree are interpolated with their representation at
the next coarser LOD, such that the resolutions are identical on boundaries between
adjacent bricks. This GPU-based interpolation results in an imperceptible transition
between adjacent bricks. Our approach requires a restricted octree, where adjacent
bricks differ only by one LOD. We consider the resolution of all the neighbors of a
brick of the cut during the generation of a volume sample. The interpolation coeffi-
cients for a sampling point in the volume can be efficiently generated on the fly from
a small pre-computed 3D texture.

Previous research on reducing these multi-resolution rendering artifacts [3], [10],
[11] focused on replicating or interpolating boundary voxels between adjacent bricks.
While these schemes produce a smooth transition only for the boundary voxels be-
tween adjacent bricks, the abrupt change in visual quality around the boundary is still
quite noticeable similar to Fig. 1. Our work is inspired by LaMar et al. [12], who
achieved imperceptible transitions between LODs for an oblique clipping plane
through a multi-resolution volume.

The main contribution of this paper is an effective and efficient approach for re-
moving multi-resolution volume rendering artifacts between adjacent bricks of differ-
ent level of detail. We integrated our technique into a GPU-based volume ray casting
system, which also supports pre-integrated rendering [24], [25]. Our experiments
show that the typical memory overhead introduced by our approach is about 10 per-
cent while the increase in computation time is about 20 percent. Our approach extends
to CPU-based rendering as well, is easily integrated in any multi-resolution volume
rendering system and has the potential to become a standard technique for multi-
resolution volume rendering.

a. b.

646 R. Carmona, G. Rodríguez, and B. Fröhlich

2 Related Work

Hardware-accelerated rendering is the current standard for real-time rendering of
volume datasets. It was introduced by Akeley [13], who suggested considering the
volume dataset as a hardware-supported 3D texture. Various implementations of
hardware-accelerated volume rendering have been popular during the past decade,
including view-port aligned polygons [14], spherical shells [3], and GPU-based ray
casting [15]. These schemes have also been adapted to render large volume datasets
[3], [4], [16]. The term “large” is used for volumes, which do not fit into texture
memory, and can potentially also exceed the available main memory. To deal with
these limitations, the volume can be divided into sub-volumes or bricks, generally of
equal size, such that each brick can be rendered independently, and easily swapped
with another one [17]. However, the limited bandwidth between the main memory
and the GPU still represents a bottleneck for large datasets on desktop computers,
limiting the interactivity. Distributed architectures using multiple GPUs have been
recently evaluated to alleviate the texture memory and bandwidth limitations [27].

Fig. 2. Consistent interpolation between bricks or blocks of different LODs. (a) The voxels left
and right of the boundary between the blocks A and B are used to replace voxels of that bound-
ary for the next LOD. The right boundary voxel is copied into the right boundary voxel of the
next coarser LOD, and the average voxel is copied into the left voxel of the next coarser LOD.
Notice that when blocks A and B with different LODs are selected for rendering, a consistent
interpolation between samples is obtained at boundaries. (b) Samples are replaced only in half
of the boundary faces. The voxels of the right (xmax), up (ymax) and back (zmax) faces are
replaced, taking the boundary data from adjacent bricks. (c) Interblock interpolation. In general,
each sample to be reconstructed at brick boundaries is obtained by weighting up to 4 voxels (8
voxels for the 3D case).

Artifacts at brick boundaries have been reduced with various techniques. LaMar
et al. [3] share the boundary voxels between adjacent bricks in each LOD. In this case,
the artifacts are only removed between adjacent bricks of the same LOD. Weiler et al.
[10] obtain a consistent interpolation between contiguous LODs by letting the bound-
ary voxels between blocks interpolate the scalar field of the coarser LOD. Although
this idea is initially outlined for transitions of contiguous LODs, it can be applied itera-
tively to achieve higher order transitions. Fig. 2a illustrates this process for one-
dimensional textures. For the 3D case, this process has to consider the six faces of the
blocks. Subsequently, Guthe et al. [7] use a similar concept for octrees, but they repli-
cate voxels of only 3 faces of each brick (see Fig. 2b). Finally, Ljung et al. [11] parti-
tion the volume into blocks with a local multi-resolution hierarchy, but boundary
voxels are not shared between adjacent blocks. During rendering, they perform the

block A block B

0
1
2
3

a. b. c.

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 647

interpolation between blocks of arbitrary resolutions in a direct way (see Fig. 2c), i.e.
without replicating voxels or pre-calculating intermediate samples by interpolation.

LaMar et al. [12] presented a multi-resolution technique for interactive texture-
based rendering of arbitrarily oriented cutting planes. They achieved smooth transi-
tions on a clipping plane by blending contiguous LODs. We extend this idea to 3D
volume rendering considering the volumetric blending of bricks and show how it can
be efficiently implemented. Their approach requires also that adjacent bricks along
the clipping plane differ in at most one LOD. A similar constraint has been previously
introduced for terrain visualization (restricted quad-trees) [18], to guarantee consistent
triangulation and progressive meshing during roaming.

3 Multi-resolution Approach

We use a multi-resolution scheme to deal with large volume datasets. During pre-
processing, the volume is downsampled into LODs, and partitioned into bricks, to
build an octree-based multi-resolution hierarchy [3], [5], [6]. For each frame, a sub-
tree of the whole octree is chosen according to a priority function P(x), which may
include data-based metrics [9] and image-based metrics [4]. The LOD of each volume
area is chosen by a greedy-style subdivision process, considering the priority P(x) [5],
[8]. It starts by inserting the root node into a priority queue. Iteratively, the node with
highest priority (head node) is removed from the queue, and its children are re-
inserted into the queue. This process continues until the size limit is reached, or the
head node represents a leaf in the octree hierarchy. We adapt this greedy-style selec-
tion algorithm such that the difference between adjacent bricks does not exceed one
LOD. Also, the memory cost of the parent bricks has to be considered. Our rendering
algorithm implements GPU-based ray casting, with pre-integrated classification.

The multi-resolution approach is presented in the following subsections. We first
introduce the core of the approach, which is based on blending of contiguous LODs.
Then, the selection algorithm is described, which considers the priority function and
the constraint of the levels of detail between adjacent bricks. Finally, we include im-
plementation details of the pre-integrated ray casting system with out-of-core support.

3.1 Blending

Fig. 3a shows a basic one-dimensional example of the blending approach. Consider
brick B located at LOD i, and its adjacent brick CD located at the next coarser LOD
(level i−1). Brick B is gradually blended with its representation at the next coarser
LOD (brick AB) such that the coarser representation is reached at the boundary to
brick CD. A weight t varying from 0 to 1 along B is required to perform the blending.

For the 3D case, any selected brick x located at the i-th LOD is adjacent to other
bricks (26 bricks for the general case), which can be located at level i−1, level i or
level i+1. Weights are assigned to each vertex of the brick; a weight of 0 is assigned if
the vertex is only adjacent to bricks located at finer or the same LOD (level i+1 or
level i), indicating that the resolution in this vertex corresponds to level i. Otherwise,
its weight is 1 (the resolution of that vertex corresponds to level i−1). Fully transpar-
ent adjacent bricks are not considered during the weighting process, since they are

648 R. Carmona, G. Rodríguez, and B. Fröhlich

Level i

Level i 1

Selection

Rendering

Rendering +
Blending

A B C D

AB CD

CDA B

A B CD

A CD(1)B+ AB

=0 =1

Brick (level i)

Weights 0 0

1

1

0
0

0

0

(s,t,r)

(s,t,r)

(s ,t ,r)

p(s ,t ,r)

x(s,t,r)

(s,t,r)

Parent (level i 1)

a. b. (level i) (level i 1)

Fig. 3. Interpolation between LODs of adjacent bricks. (a) Levels i and i−1 are two subsequent
LODs partitioned into bricks. Adjacent bricks of the same LOD share half a voxel at bounda-
ries. The selection criterion selects bricks A, B and CD for rendering. During the rendering, the
voxel data is interpolated to generate a volume sample. The difference between LODs of adja-
cent bricks generates visible artifacts. These artifacts are removed by means of gradual interpo-
lation from the finer level to its next coarser representation, such that the respective LOD
matches at the brick boundary. (b) Blending a brick located at level i with its parent at level i−1.
The blending factor β of any position (s,t,r) inside the brick is computed by a tri-linear interpo-
lation of the weights assigned to each brick vertex.

excluded from rendering. If the weight of every vertex is 0, then its parent brick is not
required for blending. In any other case, the blending is performed for each volume
sample with texture coordinates (s,t,r) in brick x. Thus, the volume sample x(s,t,r) and
the corresponding volume sample p(s′,t′,r′) of its parent are linearly interpolated using
equation (1):

pxblend ⋅+⋅−= βββ)1()(, (1)

where β is computed by tri-linear interpolation of vertex weights (see Fig. 3b). Notice
that the blended volume sample blend(β) is obtained by quad-linear interpolation
since x and p are reconstructed via tri-linear interpolation. Particularly, blend(β)=x
(level i) if the interpolated weight is β=0, and blend(β)=p (level i−1) if β=1. For any
other value of β in (0,1), the level of detail of the resulting volume sample is i−β, i.e.
an intermediate level of detail between the levels i−1 and i. This also shows that the
rendering achieves voxel-based LODs, guaranteeing a smooth transition between
adjacent bricks.

For fast tri-linear interpolation of the vertex weights, a single 3D texture of 2x2x2
voxels (corresponding to the weights of brick vertices) can be used for each brick.
However, downloading one extra 3D texture into texture memory for each brick to

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 649

blend is not appropriate. Similarly to the marching cubes approach [26], this table
could be reduced to 15 cases by transforming the texture coordinates (s,t,r) appropri-
ately. However, this would increase the overhead for the fragment program and we
opted for using a larger 3D texture instead. This 3D texture of 2x2x512 weights is
downloaded only once into texture memory (see Fig. 4). Therefore, a simple index
indicating which combination corresponds to the brick being rendered is required for
accessing the correct weights for each volume sample.

Fig. 4. Look-up table with all possible combinations of vertex weights

3.2 Priority Function

In our implementation, the priority of brick x, P(x), combines two metrics similar to
[20]: the distortion D(x) in the transfer function domain, and the importance level I(x),
based on the distance from x to the viewpoint and region of interest. We present a
short summary of the computation of the priority function. A more detailed explana-
tion of the priority function and the real-time updating is found in [20].

D(x) is the distortion of approximating the source voxels (si) by the voxels xi of x.
It can be written as (2):

∑
=

=
sn

i
ii xsDxD

1

),()(, (2)

where D(si,xi) is computed in CIELUV color space after applying the transfer function
to the voxels si and xi, and ns is the number of voxels of the source data approximated
by x [4]. The importance level I(x) of the brick x is computed considering the distance
from brick x to the region of interest (ROI) and to the viewer:

),()(

)(

),()(

)(
)1()(

eyexdxlength

xlength
t

ROIxdxlength

xlength
txI

+
+

+
−= , (3)

where diag(x) is the diagonal length of the brick x in object space, d(x,eye) is the
minimum Euclidean distance from the brick x to the eye, and d(x,ROI) is the average
between the minimum distance between x and the ROI and the minimum distance
between x and the ROI center. The value of t is used to weigh the distance to the ROI
versus the distance to the eye. In our tests, we set t=0.25, giving more priority to the
distance to the ROI. The distortion level and the importance level are multiplied to
define the priority function P(x) as (4):

)()()(xIxDxP ⋅= . (4)

3.3 Selecting the Bricks

Before rendering, the set of bricks for representing the volume under the texture
memory constraint have to be selected. We use a greedy-style algorithm, which

 0 1 2 3 16 17 254 255

650 R. Carmona, G. Rodríguez, and B. Fröhlich

selects the nodes with highest priority P(x) for splitting. It uses a priority queue PQ to
perform this process. Starting by inserting the root node into the queue, the selection
process consists of splitting the node of PQ with highest priority [4], [5], [7], i.e.
removing the head of PQ and re-inserting its non-fully transparent children into PQ.
We use a min-max octree [22] to discard fully transparent bricks. During the refine-
ment process, the following constraints are considered in this approach:

• Splitting a node must not violate the adjacency constraint. This constraint in-
dicates that the difference with respect to the LOD between adjacent bricks
selected for rendering must not exceed one level. It suggests building a re-
stricted octree, which can be constructed using an adaptation of the restricted
quad-tree algorithm for terrain rendering [18].

• Every node x∈PQ requires blending with its own parent node during render-
ing, if at least one of its adjacent bricks is coarser than x.

• The number of bricks used for rendering (including parent nodes) is limited
by a hardware constraint or user-defined texture size (N bricks).

The adjacency constraint is respected by evaluating the LOD of adjacent bricks be-
fore splitting a node x∈PQ. Each coarser node y adjacent to x needs to be split before
splitting the selected node x. Notice that the adjacency constraint has to be evaluated
again before splitting any adjacent node, and so on. This suggests using a recursive
procedure or an auxiliary queue to perform this task. In addition, for each node x in
PQ, we keep the list of its adjacent nodes A(x). When an individual split is performed,
the adjacency list of each child is created with the union of its brother nodes and a
subset of A(x); also, the adjacency list of each adjacent node is updated, replacing the
entry x by the corresponding subset of children(x).

The algorithm keeps track of the number of nodes selected for rendering, including
the parent bricks. Each node x in PQ has a flag, indicating if such a node requires its
parent for blending. One node requires its parent if any of its adjacent bricks is
coarser than itself. If a node x is split, the flag of x and the flag of its adjacent bricks
need to be re-evaluated.

The refinement process stops if a split operation exceeds the texture memory con-
straint, or no more refinement is possible.

3.4 Rendering

The selected bricks are rendered in front-to-back order, using GPU-based ray casting
with pre-integrated classification. They are composited with the under operator [19].
The pre-integrated table is incrementally generated using the O(n2) incremental algo-
rithm of Lum et al. [24], which requires about 0.06 seconds for n=256. Each brick is
stored in an individual 3D texture object; thus, loading and rendering can be performed
in an interleaved fashion, and potentially in parallel [21]. For each brick, the front faces
of its bounding box are rasterized [15], interpolating the texture coordinates of the
vertices, and the viewing vector. Therefore, each fragment obtained from rasterization
contains the viewing ray and the entry point into the brick in texture space.

The ray is sampled with constant step length. For each pair of consecutive samples
xf and xb, the 2D pre-integration table is fetched at (s,t)=(xf,xb) to retrieve the corre-
sponding color integrals RGB(xf,xb) and the opacity α(xf,xb) in the interval [xf,xb]. If

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 651

the brick requires blending with its parent, the parent is sampled at constant steps as
well. The front sample xf of the brick x is blended with the corresponding front sample
pf of its parent (1), obtaining the blended front sample f. Also, the back samples are
blended, obtaining the blended back sample b. Thus, the pre-integration table is only
fetched at location (f,b), i.e. there is only one fetch of the pre-integration table per ray-
segment. The last ray-segment inside the brick is clipped at the brick boundaries. In
this case, the segment length is used to scale the color integrals, and also to correct the
opacity [10].

3.5 Caching and Out-of-Core Support

A texture memory buffer containing 3D texture objects (bricks) is created to store the
octree cut in texture memory. To exploit frame-to-frame coherence, we keep a list of
used bricks in texture memory, and another list of unused bricks. Every time the list
of bricks requested for rendering changes between frames, unused bricks are replaced
by new bricks and moved to the used list, according to an LRU (replace the least
recently used page) scheme [6]. Since the number of new bricks can be eventually
large, it may influence the frame rate significantly. A better approach is suggested in
[20], which incrementally updates the previous cut through the octree towards the
new cut on a frame-by-frame basis, limiting the number of bricks that are exchanged
between frames.

For large datasets fitting only partially into main memory, out-of-core techniques
have to be considered. In our system, a simple paging on demand is implemented. A
main memory cache is used to hold the bricks required for rendering, and also to keep
some other bricks that can be used in future frames. The paging process is running in
a separate thread to avoid stalling the rendering process [6], [23]. A simply LRU
scheme is also used to replace unused bricks by new bricks [7], [23].

The multi-resolution dataset is stored in a single huge file, and the bricks are
loaded in groups of at most 8 bricks (which share the same parent), since the disk
bandwidth increases by loading contiguous data [20], [23]. In our tests, for brick sizes
varying between 163 and 643 samples, loading blocks containing 8 bricks doubles the
disk bandwidth, in comparison to loading independent bricks. While the requested
data is not available in main memory, the rendering thread continues rendering the
last available data, which keeps the system interactive.

4 Implementation and Results

The system prototype was developed and evaluated under 32-bit Windows XP using
Visual C++ 2005 with OpenGL® support. The hardware platform used for the tests is
a desktop PC with a 2.4GHz quad core Intel® processor, 2 GB of main memory, an
NVidia® Geforcetm 8800 graphics card with 640MB on-board memory, and a SATA
II hard disk of 7200 rpm. Medical datasets (See Table 1, and Fig. 5) have been se-
lected for testing: computer tomography of the visible female from the Visible Human
project ® [1] (VFCT), angiography with aneurism (Angio), and grayscale-converted
photos of the visible female from the Visible Human project ® [1] (VF8b).

652 R. Carmona, G. Rodríguez, and B. Fröhlich

Table 1. Test Datasets

Attribute VFCT VF8b ANGIO Measurement VFCT VF8b ANGIO
Width (v=voxels) 512 2048 512 FPS naive approach 20.01 15.00 22.09
Height (v) 512 1216 512 FPS blended approach 16.7 11.72 17.80
Slices (v) 992 5186 1559 % Blending overhead 16.54% 21.87% 19.42%
Source Size (GB) 0.85 12.03 0.76 (a) Nr. Selected bricks 3865 2761 3255
Brick Size (v) 163 323 163 (b) Nr. Parents used 426 308 426
Bits per voxel 16 8 16 Total bricks = (a)+(b) 4291 3069 3681
Tex. Cache (MB) 35 100 30 % Parent bricks 9.93% 10.04% 11.57%
Ram Cache (MB) 140 400 120 % Blended bricks 65.74% 54.04% 70.26%
Block Size (KB) 64 256 64 (c) LOD ave. naive 5.39 5.67 5.48
Bandwidth (MB) 10 33 10 (d) LOD ave. blended 5.21 5.53 5.30
LODs 0..7 0..8 0..8 LOD difference (c) – (d) 0.17 0.14 0.18

a.1

a.2

b.1

b.2

c.1

c.2
Fig. 5. Removing artifacts of our test datasets. (a) VFCT: Head of the visible female, obtained
from CT. (b) VF8b: Feet of the visible female, from full color images converted to grayscale.
(c) Angio: Angiography with aneurism. Upper images (*.1) are rendered using the naive ap-
proach; bottom images (*.2) are rendered with blending. Each brown arrow points to a visual
artifact between adjacent bricks.

For each dataset, a texture memory size is set for caching. A further budget is re-
served in main memory to page bricks from disk. We use four times the texture mem-
ory size for caching bricks in main memory. During pre-processing, datasets are split
into bricks and downsampled to build the multi-resolution hierarchy. Each set of
nodes sharing the same parent is grouped into a single block. All blocks are stored in

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 653

a single binary file. Datasets of 12 bits per sample are scaled to 16 bits to increase the
interpolation accuracy [23].

Results are shown in Table 1 and Fig. 5. The transfer function used for VFCT and
VF8b is illustrated in Fig. 6. The blended version reduces the frames rate (FPS) rate
by about 20%, although more than 54% of the bricks require blending with their par-
ent during rendering. Notice that only about 10% additional bricks (parent bricks) are
required for our blending approach. In theory, up to 1/8th of the bricks in the cut may
be required for a full octree. However, not every selected brick requires its parent for
rendering.

We estimated the average LOD for the generated images, both for the naive ap-
proach as well as for the blended approach. The average LOD for the naive approach
is calculated as the sum of the LODs of each selected brick, weighted by the volume
ratio represented by each brick. Let T be the list of nodes selected for rendering
(without parent bricks). The average level of detail is defined by equation (5).

∑

∑

∈

∈
⋅

=

Tx

Tx

xVolume

xLODxVolume

TLOD
)(

)()(

)(. (5)

The average LOD of the blended approach is also calculated by equation (5). How-
ever, the level of detail of brick x (LOD(x)) is estimated by averaging the level of
detail assigned to each brick vertex. Due to the blending of some bricks with the next
coarser LOD, the average LOD of the blended approach is lower. However, it is only
about 0.18 levels coarser than the naive approach for our examples.

Fig. 6. Normalized transfer functions for the visible female. (a) VFCT, (b) VF8b. R, G and B
channels are shown with the corresponding color. Absorption function is stored in the alpha
channel A, denoted by a black dotted line.

5 Conclusions and Future Work

We introduced an efficient and effective technique to remove disturbing artifacts be-
tween adjacent bricks for direct multi-resolution volume rendering. Our approach blends
a brick of the cut with its next coarser representation in such a way that the resolutions
match at boundaries with its adjacent bricks. Thus, the LOD is gradually reduced inside
a brick instead of simply displaying bricks of different level of detail next to each other
or blending a few boundary pixels. Our results show the effectiveness of this technique,

a.

R
G

B
A

0.0

0.2

0.4

0.6

0.8

1.0

Voxel value (s)
0.0 0.2 0.4 0.6 0.8 1.0

b.

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Voxel value (s)

R
G

B
A

654 R. Carmona, G. Rodríguez, and B. Fröhlich

which only increases the rendering time by about 20% while requiring only about 10%
of texture memory overhead.

Our approach can be extended to work in a multi-resolution framework, which
supports roaming through a volume [6], [20]. In this case the cut is often updated
from frame to frame, which may incur popping artifacts if the LOD changes in a cer-
tain area of the volume. Our technique can be used to generate an animated transition
between the previous cut and the current cut. However, the cuts should be nowhere
more different than one LOD and the animated transition becomes a 5D interpolation,
since each cut requires already a 4D interpolation to perform the blending. Fortu-
nately, the 3D interpolation part is directly hardware-supported.

References

1. Visible Human Project® (2009),
 http://www.nlm.nih.gov/research/visible/visible_human.html

2. Mirin, A., Cohen, R., Curtis, B., Dannevik, W., Dimits, A., Duchaineau, M., Eliason, D.,
Schikore, D., Anderson, S., Porter, D., Woodward, P., Shieh, L., White, S.: Very High
Resolution Simulation of Compressible Turbulence on the IBM-SP System. In: Proc.
ACM/IEEE Supercomputing Conference 1999, vol. 13(18), p. 70 (1999)

3. LaMar, E., Hamman, B., Joy, K.I.: Multiresolution Techniques for Interactive Texture-
Based Volume Visualization. In: Proc. IEEE Visualization 1999, pp. 355–362 (1999)

4. Wang, C., García, A., Shen, H.-W.: Interactive Level-of-Detail Selection Using Image-
Based Quality Metric for Large Volume Visualization. IEEE Transactions on Visualization
and Computer Graphics 13(1), 122–134 (2007)

5. Boada, I., Navazo, I., Scopigno, R.: Multiresolution Volume Visualization with Texture-
based Octree. The Visual Computer 17, 185–197 (2001)

6. Plate, J., Tirtasana, M., Carmona, R., Froehlich, B.: Octreemizer: A Hierarchical Approach
for interactive Roaming through Very Large Volumes. In: Proc. EUROGRAPHICS/IEEE
TCVG Symposium on Visualization 2002, pp. 53–60 (2002)

7. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive Rendering of Large Volume Data
Sets. In: Proc. IEEE Visualization 2002, pp. 53–60 (2002)

8. Ljung, P., Lundström, C., Ynnerman, A., Museth, K.: Transfer Function Based Adaptive
Decompression for Volume Rendering of Large Medical Data Sets. In: Proc. IEEE Sym-
posium on Volume Visualization and Graphics 2004, pp. 25–32 (2004)

9. Guthe, S., Straßer, W.: Advanced Techniques for High-Quality Multi-Resolution Volume
Rendering. Computers & Graphics 28(1), 51–58 (2004)

10. Weiler, M., Westermann, R., Hansen, C., Zimmerman, K., Ertl, T.: Level-Of-Detail Vol-
ume Rendering via 3D Textures. In: Proc. IEEE Symposium on Volume Visualization and
Graphics 2000, pp. 7–13 (2000)

11. Ljung, P., Lundström, C., Ynnerman, A.: Multiresolution Interblock Interpolation in Direct
Volume Rendering. In: Proc. EUROGRAPHICS/ IEEE-VGTC Symposium on Visualiza-
tion 2006, pp. 256–266 (2006)

12. LaMar, E., Duchaineau, M., Hamann, B., Joy, K.: Multiresolution Techniques for Interac-
tive Texture-based Rendering of Arbitrarily Oriented Cutting Planes. In: Proc.
EUROGRAPHICS/IEEE TVCG Symposium on Visualization 2000, pp. 105–114 (2000)

13. Akeley, K.: Reality Engine Graphics. In: Proc. annual conference on Computer graphics
and interactive techniques SIGGRAPH 1993, pp. 109–116 (1993)

 Reducing Artifacts between Adjacent Bricks in Multi-resolution Volume Rendering 655

14. Dachille, F., Kreeger, K., Chen, B., Bitter, I., Kaufman, A.: High-Quality Volume Render-
ing Using Texture Mapping Hardware. In: Proc. ACM SIGGRAPH/EUROGRAPHICS
Workshop on Graphics Hardware 1998, pp. 69–76 (1998)

15. Krüger, J., Westermann, R.: Acceleration techniques for GPU-based Volume Rendering.
In: Proc. IEEE Visualization 2003, pp. 287–292 (2003)

16. Ljung, P.: Adaptive Sampling in Single Pass, GPU-based Ray Casting of Multiresolution
Volumes. In: Proc. EURO-GRAPHICS/IEEE International Workshop on Volume Graph-
ics 2006, pp. 39–46 (2006)

17. Grzeszczuk, R., Henn, C., Yagel, R.: Advanced Geometric Techniques for Ray Casting
Volumes. Course Notes No. 4. In: Annual Conference on Computer Graphics -
SIGGRAPH 1998 (1998)

18. Pajarola, R., Zürich, E.: Large Scale Terrain Visualization Using the Restricted Quadtree
Triangulation. In: Proc. Visualization 1998, pp. 19–26 (1998)

19. Max, N.: Optical Models for Direct Volume Rendering. In: Visualization in Scientific
Computing, pp. 35–40. Springer, Heidelberg (1995)

20. Carmona, R., Fröhlich, B.: A Split-and-Collapse Algorithm for Interactive Multi-
Resolution Volume Rendering. Elsevier Computer & Graphics (Submitted for publication,
2009)

21. Rezk-Salama, C.: Volume Rendering Techniques for General Purpose Graphics Hardware.
Thesis dissertation, Erlangen-Nürnberg University, Germany (2001)

22. Lacroute, P.G.: Fast Volume Rendering Using Shear-Warp Factorization of the Viewing
Transformation. Technical Report CSL-TR-95-678, Stanford University (1995)

23. Ljung, P., Winskog, C., Persson, A., Lundström, K., Ynnerman, A.: Full Body Virtual Au-
topsies using a State-of-the-art Volume Rendering Pipeline. IEEE Transactions on Visuali-
zation and Computer Graphics 12(5), 869–876 (2006)

24. Lum, E., Wilson, B., Ma, K.L.: High-Quality Lighting and Efficient Pre-Integration for
Volume Rendering. In: Proc. EUROGRAPHICS/IEEE TCVG Symposium on Visualiza-
tion 2004, pp. 25–34 (2004)

25. Engel, K., Kraus, M., Ertl, T.: High Quality Pre-Integrated Volume Rendering Using Hard-
ware-Accelerated Pixel Shading. In: Proc. ACM SIGGRAPH/EUROGRAPHICS Work-
shop on Graphics Hardware 2001, pp. 9–16 (2001)

26. Lorensen, W., Cline, H.: Marching Cubes: A high resolution 3D surface construction algo-
rithm. Computer Graphics 21(4), 320–327 (1987)

27. Monoley, B., Weiskopf, D., Möller, T., Strengert, M.: Scalable Sort-First Parallel Direct
Volume Rendering with Dynamic Load Balancing. In: Eurographics Symposium on Paral-
lel Graphics and Visualization 2007, pp. 45–52 (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

