
The Design and Implementation of a VR-Architecture for Smooth Motion

F. A. Smit

Centrum Wiskunde en Informatica

Amsterdam

R. van Liere

Centrum Wiskunde en Informatica

Amsterdam

B. Fröhlich

Bauhaus-Universität

Weimar

Figure 1: From left to right: an application frame consisting of a 500k polygon model of a molecular surface, the associated motion field, an
extrapolated video frame, and the error due to extrapolation. The camera is rotating around the molecule clockwise.

Abstract

We introduce an architecture for smooth motion in virtual envi-
ronments. The system performs forward depth image warping to
produce images at video refresh rates. In addition to color and
depth, our 3D warping approach records per-pixel motion infor-
mation during rendering of the three-dimensional scene. These
enhanced depth images are used to perform per-pixel advection,
which considers object motion and view changes. Our dual graph-
ics card architecture is able to render the 3D scene at the highest
possible frame rate on one graphics card, while doing the depth im-
age warping on a second graphics engine at video refresh rate.

This architecture allows us to compensate for visual artifacts, also
called motion judder, arising when the rendering frame rate is lower
than the video refresh rate. The evaluation of our method shows
motion judder can be effectively removed.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality; I.4.8
[Image Processing And Computer Vision]: Scene Analysis—
Motion;

Keywords: VR, Motion Estimation, Smooth Motion, Video Re-
fresh Rate, Judder, Dual-GPU, Warping

1 Introduction

Modern Virtual Reality developers use toolkits in order to simplify
the implementation and testing of their application. Usually, these
toolkits are based on an underlying architcture, which defines how

the VR-application behaves in a certain state. Traditional architec-
tures are event driven (eg. [Shaw et al. 1993; Bierbaum et al. 2001;
Liere and Mulder 1999]). The application remains in an idle state
until an event arrives, which is then processed and may trigger the
generation of an image to be drawn on the display. For example,
an event can originate from either an interaction device or the sim-
ulation process, which in turn may change the state of the 3D scene
graph. The renderer will then be required to redraw the scene graph.

The generation rate of events is usually different for each compo-
nent. The simulation process could run very slowly at 2Hz, while
the interaction component produces user input events at 30Hz. Con-
sequently, the scene graph will be rendered at a maximum of 30Hz.
However, the refresh rate of the display is typically much higher.
For example, 120Hz is a common refresh rate for stereoscopic dis-
plays. In this case, the display device will display the same image
four times before displaying the next image.

Our motivation for developing a new VR-architecture comes from
the observation that visual artifacts, which is often called judder in
the video processing community [Marsh 2001], occur if the render-
ing of a 3D scene is updated at a lower frequency than the video
refresh rate of the display device. The perception of judder causes
user fatigue and eye-strain. For example, Bles and Wertheim state
that: “To avoid headaches and eye strain [...] it is necessary that
smooth visual motion will indeed be perceived as smooth.”, further-
more they state that: “When calculations necessary for generating
moving images take relatively much time [...] the movements will
be seen as consisting of small steps. This is visually quite discom-
forting.” [Bles and Wertheim 2000].

To overcome the visual artifacts caused by judder, resulting from
a mismatch between rendering and video frame rate, a VR system
should not be driven by the update rates of the simulation, rendering
or input devices. Rather, the video rate of the display should be the
driving factor.

In this paper, we introduce the design, implementation and eval-
uation of a VR-architecture for smooth motion. Forward depth
image warping using predictive per-pixel advection is used to es-
timate new images. In addition to color and depth, our approach
records per-pixel motion information during rendering of the three-
dimensional scene. These enhanced depth images are used to com-
pute predicted intermediate images. The architecture allows us to
compensate for object motion in addition to view point motion.



Figure 2: The client produces application frames (A), and cor-
responding motion fields (M ). The display device displays video
frames (V ) in sequence. Several video frames are displayed before
the next application frame is generated. The in-between applica-
tion frames that should have been displayed had the client been
fast enough can be simulated (S). Furthermore, the server uses the
initial application frame (A) and the motion field (M ) to generate
extrapolated video frames (V ). The error in the motion estimation
and extrapolation shows as the difference between the simulated
(S) and displayed (V ) frames.

The architecture is implemented using dual graphics cards. Three-
dimensional scenes are rendered at the highest possible frame rate
on one graphics card, while depth image warping is performed on a
second graphics card at video refresh rates. This approach is illus-
trated in Figure 1.

2 Architecture

The goal of the architecture is to draw new video frames on the dis-
play with a fixed, constant frame rate, regardless of the rate at which
the application is producing new application frames. Throughout
this section we assume a display refresh rate of 120Hz; therefore,
video frames must be rendered at a constant rate of 120Hz. When
the rendering of a new application frame takes longer than 1/120th
of a second, it is impossible to sequentially generate application
frames and render consecutive video frames at 120Hz. Conse-
quently, some form of parallel processing has to be used to generate
these frames at the same time.

Current video hardware, while internally highly parallel in nature,
is ill-suited to perform high-level parallel tasks. While it is possible
to run two high-level parallel processes on the same GPU, there is a
shared context state on the GPU that must be carefully maintained.
These context switches of the video hardware are typically arranged
for by the operating system and are very expensive. Furthermore,
once a command has been issued to the GPU it will run until com-
pletion without interruption. Therefore, it would be very difficult, if
not impossible, to implement parallel operations such as synchro-
nization primitives and, more importantly, priority-based process
scheduling. Without prioritized time slicing on the GPU, there is
no way to guarantee our video frames will always be drawn at a
fixed rate.

To overcome the problems of running two parallel processes on
the same GPU, our architecture uses two completely independent
video cards. Both cards are connected to the same PCIe bus us-
ing a dual GPU mainboard. Communication between the GPUs is
achieved through shared system memory over the PCIe bus. In or-
der to communicate frame-buffer information from the first to the
second GPU, a circular producer/consumer buffer is realized in the
shared memory. The client process issues an application frame to
be rendered by the first GPU, which is then written to an empty

Figure 3: The constant video frame rate VR-architecture. Data typ-
ically flows in the following sequence: Application, GPU1, PCIe,
Shared memory, PCIe, GPU2, Display. By using two distinct GPUs
it is possible to render application frames and video frames in par-
allel at different rates. The client process produces application
frames into the circular buffer using GPU 1, which in turn are con-
sumed by the server process using GPU 2.

slot in the circular buffer. The server process polls the buffer in a
non-blocking fashion whether a new frame is available. If this is
the case, the filled slot is copied to the second GPU and released
again. This is illustrated in Figure 2 and Figure 3.

3 Motion Estimation and Extrapolation

3.1 Client Implementation

In order to generate a per-pixel motion field, every geometric object
stores a transformation matrix for the previous, as well as the cur-
rent application frame. When an object is rendered, both the current
and previous vertex positions are interpolated in the pixel shader. In
this way, two 3D positions are available for each pixel: the current
position P n and the previous position P n−1. The position of the
pixel for the next application frame can now be predicted according
to the expression P n+1 = P n + V n, where V n = P n

− P n−1 is
the 3D motion vector.

The client renders both the pixel color data and the 3D motion vec-
tors to two separate buffers using GPU frame buffer objects (FBOs)
and multiple render target (MRT-2) functionality. The buffers con-
sist of 4-vectors of 8-bit bytes for each pixel color, and 32-bit floats
for the motion data. For the color of the pixel we store the red, green
and blue components and use the alpha channel as a flag to indicate
the pixel has a valid motion vector. The background is cleared with
an alpha value of zero. The three components of the motion vector
V n are stored in the first three components of the second 4-vector.
The actual depth of the pixel is stored in the last component, so it
is possible to reconstruct the 3D position using the screen coordi-
nates of a pixel and this depth value. This results in the vectors
(P n

r , P n
g , P n

b , 1) and (V n
x , V n

y , V n
z , P n

z ).

3.2 Server Implementation

The server is responsible for drawing video frames at the fixed
video frame rate. As applications frames are typically generated
at a lower rate than the video frame rate, the server must perform
frame extrapolation. Suppose the video frame rate is fixed at 120Hz
with an application frame rate of 40Hz, in this case there will be a
1:3 ratio between application and video frames. So for every re-
ceived application frame, the server needs to generate two extrapo-
lated video frames along with the received application frame.

When the server finds that a new application frame is available
in the producer/consumer buffer, it starts by converting it to a 3D



Figure 4: This figure shows the operational flow chart for the
server. The ratio between application and video frames is assumed
to be equal to the last cycle. Whenever an application frame is not
available, the previously generated point list P is displaced by a
fraction of the motion vectors V , dependent on the ratio and the
number of frames n that were already missed previously.

point-list residing at server memory. The construction of the point-
list is currently done on the CPU, but this could be converted to
a GPU implementation in the future. The process iterates over
the entire grid of 2D pixels, and for every pixel a test is made
whether the alpha value is 1, indicating a valid motion vector. For
each pixel passing the alpha test, the 2D grid coordinates are con-
verted into camera near-plane coordinates in the range [−0.5, 0.5]2.
Next, the actual 3D point is reconstructed by making use of the
stored P n

z value residing in the motion data and the known vir-
tual camera parameters. This can be realized with the expression
P n

xy = (Wxy/f) · (P n
z P n

xy) where Wxy is the focal plane width
and height, and f the camera focal length. The point-list now stores
the actual 3D position P n

xyz , the 3D motion vector V n
xyz and the

pixel color P n
rgb.

Next, the point cloud P n
xyz is rendered by the second GPU. The

rendering of the point cloud is is achieved by transmitting all the
position, motion and color data over the PCIe bus to the second
GPU using vertex buffer object (VBO) functionality. In this way,
the data remains in video hardware memory. Finally, a hardware
vertex program fetches the correct position and color for each point
and renders it as normal.

When a new application frame is not available, an extrapolation
of the previous data is performed. The server keeps track of the
observed ratio r between application and video frames, and also
the number of times n an application frame was not available since
the last received frame. Given this data, the server can extrapolate
the positions P n

xyz in the previously stored point-list by adding a
fraction of the stored motion vector V n

xyz . The scale factor is given
by n

r
. This is shown schematically in Figure 4. After the correct

scale factor for the motion vector has been determined, the points
can be rendered as a point cloud.

4 Results

We have implemented the architecture using an NVidia GeForce
8800 GTX, and an NVidia Quadro FX5600 graphics card. The
graphics cards are connected over the PCIe bus. The system uses an
AMD Athlon-64 X2 3800+ dual core processor, therefore the client
and server process can run on a separate core. An Iiyama Vision
Master Pro 512 22 inch CRT monitor operating at 120Hz refresh
rate was used for display.

In order to obtain results we rendered a simple scene at a resolution
of 1024x768 consisting of a concave object as is shown in Figure 5.
The object is rotating along two of its axes simultaneously, resulting
in non-linear motion on the camera plane. The speed of rotation is

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

1

2

3

4

5

7

10

Velocity

600

1200

1800

2400

Error

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

Figure 6: The absolute number of error pixels for extrapolated
video frames at time t for varying velocities. The ratio between
application and video frames is 1:10. The display resolution was
1024x768 pixels. The velocity axis represents degrees/frame, and
the time axis shows the nine extrapolated video frames.

expressed in degrees per application frame. We have used a simple
scene so the effects of motion extrapolation are clearly visible.

To estimate the quality of the extrapolated video frames produced
by our implementation, we have used a simulation program. A ra-
tio of 1:10 between application and video frames was artificially
maintained, simulating a 12Hz update rate at a 120Hz display. This
means that for every application frame 10 video frames are gener-
ated, nine of which are extrapolated from the application frame and
its associated motion field. The first application frame is generated
at t = 0.0, and the next consecutive application frames are gener-
ated at t = 1.0, t = 2.0, etc. The nine extrapolated video frames
from the application frame at t = 0.0 correspond to animation tim-
ings t = 0.1, t = 0.2 ... t = 0.9. As a basis for comparison, the
simulation program also renders the application frames that should
be displayed at times t = 0.1, t = 0.2 ... t = 0.9. The quality of
the motion estimation and extrapolation can be inspected by com-
paring the simulated application frames and the extrapolated video
frames. For example, the first extrapolated video frame occurs at
t = 0.1 and is generated from the application frame and motion
data at t = 0.0. Next, we also render a simulated application frame
for t = 0.1 and compare it with the extrapolated video frame at
t = 0.1.

The simulated application frames and the extrapolated video frames
were compared per pixel to asses the quality of extrapolation.
Whenever two corresponding pixels differ for any color channel
the pixel is marked as an error pixel. A small threshold value for
the difference is used to avoid marking small, imperceivable devi-
ations in pixel color as errors. The total amount of error pixels is
used as a quantitative measure for the quality of the extrapolated
video frame. The errors are visualized by rendering error pixels in
red over a grayscale luminance version of the simulated application
frame. This is illustrated in Figure 5.

From Figure 5, we can distinguish between three types of errors.
First, there is the error due to occlusion, which is present near the
the yellow sphere. Occlusion errors occur when in the original ap-
plication frame a part of the scene is occluded by other geometry.
Therefore, there are no points present in the point cloud represent-
ing that part of the scene, and thus these regions are never reached
by any point after motion extrapolation. The second type of error is
caused by errors in motion estimation. If the added motion vectors
become larger, the linear approximation of motion deviates more
from the actual motion. This can be seen clearly at the edges of
the object. Finally, the third type of error is due to aliasing or gaps.
The presence of gaps is reduced by the use of resolution scaling,



Figure 5: From left to right: the motion field associated with the actual application frame at t = 0, the simulated application frame ahead
in time, the video frame extrapolated from the application frame and the motion field, and finally the visualization of the error between the
extrapolated video frame and the simulated application frame. The ratio between application and video frames is 1:10. The top row shows
these images for a velocity of 4 degrees/frame at time t = 0.6, i.e. the 6th extrapolated video frame. The bottom row shows a velocity of 10
degrees/frame at time t = 0.7.

however if motion becomes large this is no longer sufficient. This
type of error is visible on the orange sphere among other locations.

Figure 6 show the number of pixel errors for each of the nine ex-
trapolated video frames at different velocities. It can be seen that
the error increases as the time of the extrapolated video frame in-
creases and if the rotational velocity increases. This shows that the
error in motion extrapolation is proportional to the length of the
added motion vectors as expected. Therefore, different ratios be-
tween application and video frames are expected to produce similar
results. For example, a 1:4 ratio is expected to result in a maximum
error close to the observed error for time t = 0.3 in the case of the
1:10 ratio.

For the 500k polygon scene shown in Figure 1 our server imple-
mentation was able to maintain a steady 120Hz video frame rate
for a resolution of 320x200. For a resolution of 640x480 the server
was no longer able to maintain the required 120Hz frame rate and
dropped to 60Hz.

5 Discussion

We presented the design, implementation and evaluation of a VR-
architecture for smooth motion. The architecure can be benifical to
those VR applications in which the simulation or rendering rate is
lower than the video refresh rate.

We briefly discuss various shortcomings of our implementation.
First, the performance of the system is not adaquate for typical res-
olutions found in VR displays. Currently, a 120Hz video frame rate
for a resolution of only 320x200 can be met. There are two reasons
for this. The implementation transfers data from one video card to
the other through shared memory and the PCIe bus. For larger reso-
lutions this is a limiting factor, as the throughput over the PCIe bus
is no longer sufficient. It is therefore desirable to be able to copy
data directly between the video cards. Unfortunately, current gen-
eration video cards do not provide this functionality. At the server
side, the point-list is generated completely on the CPU. An alterna-
tive approach would be to generate the point list on the GPU, for
example by the use of histogram pyramids [Ziegler et al. 2006].

Our motion estimation and extrapolation method is but one of many
choices. Linear extrapolation is a reasonable estimate as we are
dealing with very short time intervals during which the motion is
typically limited. However, in order to reduce potential errors, more
advanced predictive filtering methods, such as the Kalman filter,
can be applied instead.

A fundamental problem with rendering displaced point clouds is
the potential occurrence of gaps, i.e. 2D output pixels that are
never reached by a displaced 3D point. In order to avoid such gaps,
a 2D mesh of connected quads can be constructed from the point
cloud, although care must be taken since the rendering may intro-
duce other artifacts due to a self-intersecting mesh.

References

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. Vr juggler: A virtual platform
for virtual reality application development. In VR, 89–96.

BLES, W., AND WERTHEIM, A. 2000. Appropriate use of virtual
environments to minimise motion sickness. RTO MP58, 7.1–7.9.

LIERE, R., AND MULDER, J. 1999. PVR - an architecture for
portable VR applications. In EGVE ’99 Conference Proceedings,
125–135.

MARSH, D. 2001. Temporal rate conversion. Microsoft archived
paper: http://www.microsoft.com/whdc/archive/TempRate.mspx.

SHAW, C., GREEN, M., LIANG, J., AND SUN, Y. 1993. Decou-
pled simulation in virtual reality with the MR toolkit. Informa-
tion Systems 11, 3, 287–317.

ZIEGLER, G., TEVS, A., THEOBALT, C., AND SEIDEL, H.-P.
2006. On-the-fly point clouds through histogram pyramids. In
11th International Fall Workshop on Vision, Modeling and Visu-
alization 2006 (VMV2006), Eurographics, 137–144.


