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Abstract—We present a powerful framework for 3D-texture-based rendering of multiple arbitrarily intersecting volumetric 
datasets. Each volume is represented by a multi-resolution octree-based structure and we use out-of-core techniques to support 
extremely large volumes. Users define a set of convex polyhedral volume lenses, which may be associated with one or more 
volumetric datasets. The volumes or the lenses can be interactively moved around while the region inside each lens is rendered 
using interactively defined multi-volume shaders. 

Our rendering pipeline splits each lens into multiple convex regions such that each region is homogenous and contains a fixed 
number of volumes. Each such region is further split by the brick boundaries of the associated octree representations. The 
resulting puzzle of lens fragments is sorted in front-to-back or back-to-front order using a combination of a view-dependent octree 
traversal and a GPU-based depth peeling technique. Our current implementation uses slice-based volume rendering and allows 
interactive roaming through multiple intersecting multi-gigabyte volumes. 

Index Terms—Multi-volume visualization, constructive solid geometry, shading, display algorithms. 
 

 
1 INTRODUCTION 
Modern data acquisition and simulation methods can generate 
multiple huge volume data sets representing different attributes or 
temporal snapshots of a single object or region in space. These data 
sets often have different resolutions and different coordinate systems, 
which are spatially overlapping, but not spatially aligned. 
Resampling these volumes onto a single multi-attribute grid is often 
not desirable due to many possible reasons, e.g. only partial spatial 
overlapping volumes, pre-processing time, numerical inaccuracies or 
data bloat if the original resolutions are quite different. 

We developed a real-time rendering framework for dealing with 
multiple multi-resolution volume datasets, which are spatially 
overlapping. These datasets are explored using polyhedral lenses, 
which are associated with one or more volumes (see figure 1). Our 
geometry pipeline splits each lens into multiple homogenous 
volumetric regions. Each such region is inserted into the associated 
octree-based multi-resolution representations and further split at the 
brick boundaries. The resulting puzzle of lens fragments is sorted in 
front-to-back or back-to-front order using a combination of a view-
dependent octree traversal and a GPU-based depth peeling technique. 
The rendering technique for overlapping volumes is specified by our 
graphical shader composer interface, which generates individual 
shader code for intersecting volumetric regions. 

Our work is motivated by oil and gas visualization applications, 
where datasets are typically very large – in most cases exceeding the 
memory on the graphics card and even the main memory. In the past, 
multi-resolution out-of-core techniques have been developed to deal 
with such demanding requirements, e.g. [7][8]. However these 
approaches do not deal with multiple intersecting volumes, which are 
becoming more common. One example are seismic surveys which 
may be performed in regular intervals in oil producing regions to 
estimate the topological changes due to the exploitation and to plan 
new wells. Due to advancements in acquisition and processing 
technologies, more recent data sets are generally of much higher 
resolution and may also reach deeper into the earth and cover a 

larger area than older surveys. In addition different acquisition 
technologies provide attributes at differing resolutions. Ideally all the 
acquired information should be available to the geo-scientists in its 
best representation. 

The two main contributions of our work are an approach for 
multi-volume rendering for arbitrarily intersecting multi-resolution 
datasets and a flexible shader framework for specifying the rendering 
behavior in overlapping volume regions. We describe our rendering 
pipeline, which requires extensive slicing and cutting operations on 
the volume lens geometries down to the brick level of the multiple 
multi-resolution volume representations. Our shader composer is a 
powerful interactive visual editor for specifying the rendering 
behavior for multiple overlapping volumes. The shader composer 
generates individual shader programs for each homogeneous volume 
region consisting of one or more volumes. Thus mono and multi-
volume regions are each handled efficiently. Our implementation 
confirms that real-time rendering of multiple large volumes using 
complex compositing behavior has become possible on modern 
graphics processing units. 

2 RELATED WORK 
In this section we will focus on previous work aimed at multi-
volume rendering and in particular on contributions that deal with 
intersecting volume datasets. 

Most work on multi-volume rendering was done in the field of 
medical visualization. After spatial registration multi-modal volume 
datasets are visualized simultaneously to provide the advantages of 
the different modalities in a single picture. Several publications deal 
with the task of merging the different volume data sources. In [1] 
Jacq and Roux introduce a multi-volume ray casting algorithm that 
merges for each sample position the sample values for every volume 
by applying a maximum, minimum, or an average operator. Similar 
to that Wilson at el. propose in [2] so-called data fusion schemes for 
hardware accelerated slice-based volume rendering, which either 
alternately sample the different volume data sets, or combine for 
each sample position the weighted sample values, or distribute them 
into different color channels. A detailed proposal of several volume 
intermixing schemes is given by Cai and Sakas in [3]. The proposed 
methods are divided into the three categories of image, illumination 
and accumulation level intermixing, which define different data 
merging points in a ray casting multi-volume rendering pipeline. In 
[4] Rößler et al. introduce an interactive slice-based volume 
rendering frame work for multiple volumes, which intermixes slices 
of volumes by depth sorting. Each volume is assigned its own GPU 
shader, which is applied to all fragments of the associated slices. 
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So far all approaches only deal with spatially aligned volume 
datasets, which could be also considered as a single multi-attribute 
dataset. In contrast Nadeau [5] introduces the concept of a volume 
scene graph, which can contain multiple volume datasets and space-
filling functions at arbitrary positions in space. Multiple volumes can 
intersect in arbitrary ways. They are combined by group nodes, 
applying a composition function, which can be chosen from imaging, 
constructive solid geometry (CSG), and math operators. For 
rendering the volume scene graph it is evaluated for all voxel 
positions on a world volume grid. This evaluation is costly and needs 
to happen every time the positions of the volume change with respect 
to each other. The resulting regular volume can be displayed by any 
conventional volume rendering algorithm for single volumes. No 
multi-resolution or out-of-core functionality is supported. 

Grimm et al. [6] developed a parallel CPU-based ray casting 
algorithm for multiple non-aligned volume objects, which they call 
V-Objects. This approach is closest in functionality to our approach. 
It is discussed in detail in section 3.3 once more details about our 
algorithm are introduced. 

Our work is based on Octreemizer [7], a 3D-texture-based ap-
proach for interactive visualization of very large volumetric datasets. 
Octreemizer uses a two-level predictive paging approach (hard disk 
to main memory and main memory to texture memory) with several 
tiled (bricked) and hierarchically arranged resolution levels. It allows 
users to roam through large volumetric datasets in real-time with low 
memory requirements. Octreemizer can only handle a single multi-
resolution volume including out-of-core functionality. For multi-
volume rendering we use some of the original Octreemizer func-
tionality to manage individual volumes and we prepare the required 
proxy geometry for slice-based direct volume rendering using our 
extended geometry pipeline described in the following section. 

Fig. 1. A seismic dataset (512 x 512 x 512 voxels) is overlapping with 
two high resolution clip volumes containing a sphere. Inside the 
spheres additionally different transfer functions are applied to 
emphasize low and high seismic amplitudes (blue and red) in the 
intersected regions. If the spheres overlap, low and high amplitudes
are both visible. Phong lighting with two light sources is applied. 

3 GEOMETRY PIPELINE 
Octreemizer uses volume and lens objects to define regions of 
interest. The geometry pipeline trims, cuts and slices the lenses as 
shown in figure 2 to generate the proxy geometry needed for sliced-
based rendering. A first step trims the lenses with respect to the view 
frustum and different volume boundaries. Then homogeneous lens 
sections are created, which contain a fixed number of volumes. 
These regions are inserted into the multi-resolution octree represen-
tations described in [7] by further splitting them at the brick boun-
daries. Finally, the resulting lens fragments are sorted in front-to-
back or back-to-front order and composited by slice-based rendering. 

3.1 Volumes and Lenses 
A volume contains the bricked multi-resolution volume data in an 
octree hierarchy and information about its position, orientation and 
size. A lens consists of one ore more convex polyhedrons, which 
define the regions of the volume data that will be displayed. A lens 
may also contain convex polygons, which define slices through the 
volume. We will not further discuss these polygonal slices, though 
they are supported in the entire geometry pipeline. 

Lenses have associated states including: 
• Transformation: Position, orientation and size. Can be 

“locked” to other volumes or lenses in order to group and 
simultaneously drag multiple objects. 

• Transparent Mode: Toggles whether the lens should be 
completely opaque or the transparency information from the 
shader stage should be used. 

• Slice Distance: The slice distance for slice-based rendering. 
Each lens can be associated with a single or multiple volumes. 

The areas of the associated volumes intersecting the lens will be 
rendered. The lens in figure 2a has been associated with two volumes 
and it intersects both. Lenses without associated volume may be used 
as clip lenses in order to geometrically clip away intersections with 
other lenses. Of course a lens may contain only a single polyhedron, 
which entirely encloses all associated volumes. As expected this 
configuration renders the complete volume data sets. 

3.2 Clipping at View Frustum and Volume Boundaries 
In a first step the lenses are clipped against the view frustum and the 
volume boundaries. We create these “trimmed” lenses for each 
combination of a lens and an associated volume. The polyhedrons of 
a lens are transformed by the lens’ transformation matrix and clipped 
at the view frustum and the volume boundaries. The resulting 
polyhedral parts residing in a single volume define the trimmed lens. 
Figure 2b shows two trimmed lenses created from one lens that 
intersects two volumes. The trimmed lenses are updated only if 
necessary, e.g. when the relative transformation between the source 
lens and the volume changes. 

3.3 Considering Overlapping Volumes 
Now that we have the parts of the lenses residing inside each 
associated volume we have to identify the lens regions where 
multiple volumes intersect. We generate separate convex poly-
hedrons, which represent regions with a fixed set of overlapping 
volumes. 

Our lenses are similar to Grimm et al.’s [6] V-Objects which are 
associated with a volume data source and comprise visual properties 
and a transformation matrix. They use a parallel software ray casting 
scheme for rendering multi-volume scenes without out-of-core 
functionality or multi-resolution support. Their rendering approach is 
speed up by decomposing each ray into mono-volume and multi-
volume segments. The mono-volume segments of multiple rays are 
processed in brick-wise order for cache efficiency. Multi-volume 
segments sequentially sample and blend all associated volumes. Our 
approach uses hardware-accelerated slice-based rendering to render 
multiple volumes including out-of-core functionality for each 
volume. We split the volumes – instead of individual rays – into 
homogenous regions containing a particular subset of the considered 
volumes. Since we use a multi-resolution approach, this splitting has 
to be also considered within the multi-resolution hierarchy of each 
contributing volume creating brick fragments at different octree 
resolutions. Grimm et al. use ray intersections to identify mono- and 
multi-object regions. This approach has several disadvantages in our 
context: 



• The ray entry and exit points are calculated using octree 
projections. This is efficient for GPU-based ray casting, but 
in this case the points are additionally needed by the CPU for 
a depth sort, which would require expensive read backs from 
the graphics board. 

Octree distribution 

Fig. 2. Geometry pipeline 
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• A depth sort of all entry and exit points is necessary to 
determine the mono- and multi-object segments. Complex 
scenes can contain millions of those points. 

• The algorithm cannot be easily adapted to other rendering 
techniques than ray casting. 

Also, it would have been possible to integrate existing libraries, 
like CGAL [9], and to use CSG algorithms, like Boolean operations 
on nef polyhedrons [10][11]. These operations are flexible, powerful 
and stable, but also much slower than our algorithm, which does not 
need this flexibility and thus benefits from optimizations that depend 
on specific constraints, e.g. simplified data structures, convex 
polyhedrons, no open boundaries, no dangling facets. We compared 
our algorithm with CGAL by measuring the time needed to calculate 
the Boolean intersection and differences of two overlapping cubic 
polyhedrons on an Intel Core 2 Duo E6600. For different 
orientations, our algorithm needed between 40 and 90 microseconds, 
while CGAL needed between 90,000 and 820,000 microseconds. 

3.3.1 Lenslets 
Lenslets are homogenous convex polyhedral regions, which are 
associated with a fixed set of volumes. Lenslets do not intersect each 
other. They are generated by intersecting the polyhedrons of the 
trimmed lenses associated with different volumes with each other 
(see figure 2c) followed by additional split operations to guarantee 
convexity. If only spatially separated lenses would be used to define 
how the associated volumes are rendered, it would be sufficient to 
find the intersections between the trimmed lenses of each source 
lens. However, we decided to support overlapping lenses and 
compute the intersections between all existing trimmed lenses and 
allow users to define the rendering behavior in these overlapping 
lens regions. We use the following algorithm to compute the lenslets: 
 
lenslets.remove(outdated lenslets) 
FOREACH lens IN new or updated trimmed lenses 
{ 
 test_lens_set = lens 
 WHILE intersect_lens = lenslets. 
  find_intersecting_lens(test_lens_set) 
 { 
  lenslets.add(test_lens_set ∩ intersect_lens) 
  lenslets.add(intersect_lens – test_lens_set) 
  lenslets.remove(intersect_lens) 
  test_lens_set = test_lens_set - intersect_lens 
 } 
 lenslets.add(test_lens_set) 
} 
 

Figure 2c shows an example of the results of the Boolean opera-
tions used in this algorithm. It also shows that the Boolean difference 
can be non-convex. Figure 2d demonstrates how additional cuts 
ensure convex polyhedrons, which are required by our geometry 
pipeline. These operations are not explicitly mentioned in the above 
algorithm for simplicity. Additionally, our implementation does not 
generate the two Boolean differences and the intersection in three 
separate steps. Instead, we use an intersection operation that creates 
additionally the two Boolean differences by intersecting each poly-
hedron with each face plane of the intersecting polyhedron. 

The lenslets contain references to their “parent” trimmed lenses, 
from which they have been constructed. Additionally, the trimmed 
lenses reference their “child” lenslets and all the intersected trimmed 
lenses. With these references, it is possible to find and remove all 
outdated lenslets, which is necessary if a trimmed lens has been 
updated (e.g. moved around). Thus only a minimum number of 
lenslets have to be reconstructed during interactive operations. 

Trimmed Lenses

Trim1

Trim2 

Lenslets

c) 

Lenslet3 =

Lenslet2 =

Lenslet1 =
Trim1 – Trim2

Trim1 ∩ Trim2

Trim2 – Trim1

Convex Polyhedrons 
Additional cuts 

d) 

Bricked Polyhedrons 

e) 

Multi-Volume

f) 

Sliced Brick-Level Lens 

View Direction



 

3.3.2 Intersection Details 

Fig. 3. Depth peeling 
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We use the Sutherland-Hodgman polygon clipping algorithm [12] to 
efficiently construct Boolean intersections and differences of 
polyhedrons. Our implementation uses the following objects for 
efficient and numerically stable handling of these operations: 

• Vertex: A set of three coordinates. 
• Vertex Pool: A set of vertices. 
• Plane: Parameters from a plane equation. 
• Plane Pool: A set of planes. 
• Polygon: A plane index and a set of vertex indices. 
• Polyhedron: A set of polygons and a bounding box. 
We construct planes from every source polygon in the scene 

(faces of polyhedrons, volume data sets and view frustum) and store 
them in a plane pool. The polygons that are used and constructed 
during the intersection stage contain a reference to coplanar planes. 
Additionally, the polygons generated from a polyhedron contain a 
reference to their outward facing normal. 

The plane pool has two advantages. First, it speeds up the 
intersection checks. If two polygons of two different polyhedrons 
reference the same plane, we know immediately, that each of the two 
polygons does not intersect with the other polyhedron. Additionally, 
if the normals are facing in different directions, the associated 
polyhedrons themselves do not intersect each other. The second 
advantage concerns numerical problems: Without the plane 
references, intersection calculations of two contacting polyhedrons 
would often fail due to limited floating-point precision. 

3.4 Bricking Lenslets 
This stage is required to support bricked volumes. The lenslets have 
to be cut further at the brick boundaries, because the rendering stage 
accesses only a single brick (3D texture) of a volume at a time. We 
call the brick-sized lens polyhedrons lens fragments. 

3.4.1 Recursive Octree Insertion 
The lenslets maintain references to their source trimmed lenses and 
therefore their associated volumes. We add each lenslet to the 
associated volume object of the first trimmed lens: The lenslet 
polyhedron is transformed to the coordinate system of the volume 
and added to the root brick of the octree hierarchy. Then they are 
recursively inserted into the child bricks. During this insertion, the 
polyhedrons are split at the brick boundaries. Based on the 
Sutherland-Hodgman polygon clipping algorithm, we have 
developed an algorithm which efficiently splits polyhedrons 
simultaneously at three orthogonal axis-aligned planes. The basic 
idea is to map the vertices directly to octants instead of half-spaces, 
and to create a new polyhedron from all vertices in each octant and 
the line intersections with the octant boundaries. The split 
polyhedrons from the eight octants are added to the child bricks. 
Bricks without polyhedrons (and their children) will not be 
considered during the rendering stage. 

3.4.2 Dealing with Multiple Octrees 
If a lenslet references multiple volumes, we have to split it at the 
brick boundaries of all these volumes. The marked lenslet in 
figure 2e is an example for this case. Cutting at brick boundaries of 
multiple volumes is an expensive operation, but it is necessary, 
because every part of the resulting “puzzle” has to be rendered with a 
different combination of active bricks. 

We start with the brick-level lens fragments from the insertion of 
the lenslets into the first volume. During the draw traversal of the 
first octree, the polyhedrons in each brick are transformed to the 
coordinate system of the next volume, added to its root brick and 
inserted into its octree. This is repeated for all volumes associated to 
a lenslet. We perform these second level traversals (and the proxy 
geometry generation described in the next section) during the 
rendering stage, interleaved with the brick rendering traversal. This 
way the CPU is able to prepare the geometry of a brick, while the 
geometry of the previous brick is still rendered by the GPU. 
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disable writing to color buffer 
enable depth test 
disable writing to depth buffer 
enable back face culling 
create unsorted list of all polyhedrons 
draw unsorted list and count pixels unoccluded 
 by opaque scene for each polyhedron 
 (full pixel count, figure 2a) 
remove all fully occluded polyhedrons 
WHILE unsorted list has more than one element 
{ 
 copy main depth to separate depth buffer 
 activate separate depth buffer 
 enable writing to separate depth buffer 
 draw unsorted list 
 disable writing to depth buffer 
 set depth test function to EQUAL 
 draw unsorted list and count pixels of each 
  polyhedron (front pixel count, figure 2b) 
 reset depth test function to LESS 
 FOREACH polyhedron in unsorted list 
 { 
  IF front pixel count == full pixels count 
  { 
   remove polyhedron from unsorted 
    and append to sorted list 
  } 
 } 
 IF no geometry was moved 
 { 
  remove most visible polyhedron from 
   unsorted and append to sorted list 
 } 
 activate main depth buffer 
} 
append unsorted list to sorted list 
enable writing to color buffer 



3.5 Proxy Geometry 
At this point, we have polyhedrons at the brick level, or intersected 
brick level for multiple volumes. We now create the proxy geometry 
needed by the selected rendering technique. 

In case of ray casting [13], the polyhedrons can be used directly 
to obtain the ray entry and exit points. In case of slice-based volume 
rendering (SBVR) [14], which we use in our current implementation, 
we create slices orthogonal to the view direction and clip them at the 
polyhedron faces (see figure 2f). The slice distance is controlled by 
the sample distance setting of the associated lens. If two contacting 
polyhedrons have the same slice distance, the slice offset is also the 
same to avoid rendering artifacts at the border. 

3.6 Sorting 
For correct rendering results the transparent parts of the scene have 
to be sorted. The order (back-to-front or front-to-back) depends on 
the selected rendering and compositing technique. 

The polyhedrons at brick level are sorted on-the-fly during the 
view-dependent recursive octree traversal. For perspective projec-
tions we simply identify the octant which contains the viewer. For 
orthogonal projections we identify the octant which contains the 
vector which originates at the brick center and points in direction of 
the positive Z-axis in eye space coordinates. The polyhedrons of the 
child brick in this octant have to be rendered last (or first). The other 
child bricks are sorted by their L1-distance. 

Sorting the polyhedrons at the lenslet level is a more difficult 
task. Since simple sort by viewer distance is not sufficient, we have 
developed a GPU-based depth peeling technique to reliably find an 
occlusion-preserving rendering order. We use a separate depth buffer 
and OpenGL occlusion queries for the algorithm shown in figure 4. 
It counts the front pixels of each polyhedron (see figure 3b) and 
removes the front layer of polyhedrons which are not occluded by 
other polyhedrons in each step. The sequence of layers forms a front-
to-back sorted list. 

As a side effect, we get free occlusion culling, because we have 
to initialize the full pixel count for each polyhedron as shown in 
figure 3a and we always initialize the depth buffer with the main 
depth buffer, which holds the depth information of the opaque parts 
of the scene. We do not draw polyhedrons with a pixel count less 
than a given threshold. 

As the polyhedrons do not intersect each other, there is 
theoretically always at least one in front. Due to limited floating 
point precision, it is possible that there is none. In this case we find 
the most visible polyhedron (highest ratio of front pixel to full pixel 
count) and move only this one to the sorted list. 

4 MULTI-VOLUME SHADER FRAMEWORK 
Rendering a region with multiple intersecting volume data sets 
requires defining a data compositing technique. In this section we 
describe the techniques we have developed to overcome the 
limitations of commonly used techniques, such as: 

• Interleaved slices: View-aligned slices are created 
independently for each volume and blended to the 
framebuffer in an interleaved order [4]. The technique 
introduces opacity errors and does not allow combining the 
sampled values. 

• Color channels: The intensity values of up to three volumes 
are combined by using the color channels red, green and blue 
[2]. Only scalar transfer functions can be used. 

4.1 Interactive Shader Composer 
We developed an interactive shader composer, which allows creating 
special purpose GPU-based shader programs by interactively 
plugging data flow widgets together using a graphical user interface 
(GUI). Figure 5 shows an example configuration of a shader compo-
ser. Of course multiple shader composers can exist simultaneously. 

4.1.1 Shader Composer GUI 
The GUI consists of data flow widgets, called nodes, which have 
input fields on the top and/or output fields on the bottom. There are 
single-component fields, e.g. red, green, blue, alpha (opacity), and 
multi-component fields, e.g. RGBA, XYZW or gradient vector. Field 
connections are defined by drag and drop operations, which connect 
compatible fields. A connection from a single to a multi-component 
field is possible, but not vice versa as it would be ambiguous. The 
field connections are displayed as red or green lines. The color 
indicates if the data flow is valid. For example, the data flow from 
the “Inverse” node in figure 5 is invalid, because it has no input 
connection. If at least one green line reaches the output node, the 
shader is “complete” and can be used by the rendering stage. 

The composer GUI consists initially of a “ColorOut” node, which 
represents the final combined sample value. The user connects the 
composer to one or more lenses, which are described in section 3.1. 
Based on these connections, the composer creates input nodes: One 
lens node with a statically connected volume node for each volume 
which is associated with a connected lens. The latter is necessary 
because a single lens can have multiple associated volumes, and the 
lens node output fields are needed for every volume. The lens nodes 
are required if the user wants to create different shaders for different 
regions of a volume or in conjunction with other lenses. 

4.1.2 Basic Shader Composer Nodes 
The basic input/output composer nodes are: 

• ColorOut: The RGBA value of this node is passed to the 
active fragment shader program. 

• Volume: Represents a volume associated with one or more 
connected lenses. 

• Lens: Represents a lens connected to the composer. It has a 
statically connected volume node and offers an RGBA 
output field for the sampled volume element of the connected 
volume. Additionally, there are fields for single components. 

4.1.3 Extensible Shader Composer Nodes 
The following composer nodes can be used to define the data flow of 
the shader program. The node class hierarchy is modular and can be 
easily extended. 

• Palette: A one or two dimensional transfer function. 
• Lookup: Performs a color lookup in the connected palette. 
• Gradient: Calculates a gradient vector on-the-fly. 
• Light: An illumination model and parameters. 
• Lighting: Applies one ore more lights to the input color. 
• Operator: The user can switch between blend, product, sum, 

minimum, maximum, inverse and negative, and between 1, 
2, 3 or 4 components. 

• Constant: Outputs a single static value. 
Most of the selectable operations of the operator node are self-

explanatory. The operation that we call blend has been described as 
“inclusive opacity” by Cai and Sakas [3] for two volumes. It sums up 
the accumulative effect caused by the opacities from multiple 
volumes and applies it as the opacity to the current point. The 
resulting opacity and intensity for n volumes is: 
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Another operation that we call “inverse” calculates: 
operandinverse −=1  

This inverts the numerical range [0, 1] and is useful to invert 
color and opacity values. 



 

4.1.4 Recursive Shader Generation 
For each lenslet that should be rendered, we need a shader program 
that matches with the intersected lenses referenced by the lenslet. To 
generate this program, we first identify a shader composer that can 
be used for the lenslet. This is the case if a composer has connections 
to every lens from which the lenslet has been constructed. 

Second, the shader composer generates a unique shader code 
identifier depending on the defined data flow and the combination of 
intersected lenses. The composer requests the shader code identifier 
from the ColorOut node. Though the composer visualizes the data 
flow from the input nodes to the output node, the resulting shader 
code identifier is generated using the opposite direction. The 
ColorOut node initiates a recursive traversal back to the input nodes 
to determine the branches with valid data flow. In a second traversal 
along the valid data flow, each node adds a specific identifier 
fragment to the code identifier. 

In the third step, we search in a list of cached fragment shader 
programs for the shader code identifier. If it is not found, we create 
new fragment shader code which is well-defined by the code 
identifier, and compile a new fragment shader program, which is 
added to the list of cached programs. Thus the shader code identifier 
avoids the repeated generation of fragment shader code for each 
lenslet in every frame. 

Compiling shader programs on-the-fly is an expensive operation, 
but a single flexible fragment shader program could be too complex 
for current GPUs and would be much slower than the specialized 
programs. It is also impossible to prepare and store all possible 
specialized programs, because their number is infinite. Though 
compiling a shader program needs up to 50 ms, the user typically 
does not notice it while paying attention to the shader composer. 

4.2 Multi-Volume Illumination 
Our implementation supports the Phong lighting model to illuminate 
volumes with one or more light sources. We use the normalized 
negative opacity gradient as the surface normal for the diffuse and 
specular reflection. 

In the shader composer GUI, the user creates a light node to 
specify the parameters for the Phong lighting. The light node has a 
gradient input field, from which it calculates the surface normal. The 
gradient field is usually connected to a gradient node, which can be 
connected to any single component output field in the data flow. In 
figure 5, it is connected to a sum node. During the recursive shader 
generation, the gradient node adds a flag to the traversal, indicating 
that it does not need the data value at the current location, but the 
data values at six axis aligned offset locations. From these six values, 
the resulting shader program will calculate the central differences 
and the gradient. 

The gradient node enables the user to determine the gradient at 
any point in the data flow. If users combine one or more volumes 
with one or more operations like blend, product or transfer function 
lookup, they might want to apply lighting using the gradient of the 
effective opacity. As these operations are defined interactively, it is 
not possible to precalculate these gradients. 

Finally, a lighting node applies the illumination of one or more 
light nodes to the connected color data flow. The lighting node in 
figure 5 applies two lights. 

4.3 Default Shader Composer 
We maintain a default shader composer, which is automatically 
connected to every existing lens. If no user-defined composer 
matches with the lenses referenced by a lenslet, the default composer 
will be used. Thus the user does not have to create composers for 
trivial and simple shader configurations. 

Initially, the default composer renders single volumes using 
opacity-based compositing without any additional operations. 
Regions with multiple intersecting lenses are combined by a blend 
operation. We have selected it as the default composition technique, 

because it produces a kind of blending that most users would expect 
for overlapping transparent volumes. 

Fig. 5. A shader composer example. Top left: Four overlapping sphere 
volumes; moved, resized and stretched. Two of them have resolutions 
of 256 x 256 x 256 voxels and the small two have 64 x 64 x 64 voxels.
Top right: The same volumes with enabled shader composer. Bottom: 
The shader composer GUI. Three volumes are subtracted from the 
biggest sphere volume, thus they act as clipping volumes. Two lights 
are applied to the resulting sum. The final shape is yellow because the 
blue color component is not connected to the ColorOut node. 

The lenses described in section 3.1 have additional states to 
influence their operations in the default composer. It is possible to 
add a transfer function, which will be applied to the lens prior to the 
combination with intersecting lenses. It is also possible to select 
another operation than blending for the composition of lens regions. 
The order of these operations is pre-defined. The default composer is 
additionally able to add lights after the combination operations. If the 
functionality of the default composer is not sufficient, e.g. users need 
additional operations or a different order of operations, a user-
defined composer is required. 



5 RESULTS AND DISCUSSION 
Our multi-volume shader framework can be used in many ways and 
in different domains. We will focus on some basic techniques and 
describe some domains which could benefit form our work. 

One of the basic techniques is volume clipping. Volumes can be 
clipped with arbitrarily shaped clip objects, if they are voxelized as 
proposed by Weiskopf et al. [15]. An example is shown in Figure 5. 
This technique can be easily extended using the shader composer. 
For example, only selected color channels could be clipped away. 
Figure 1 demonstrates another extension. We use additionally the 
inverted sample value of the clip object volume to apply different 
shader behavior for the in- and outside of the clip object. Thus it is 
possible to emphasize regions with different transfer functions. 

Opacity-based volume composition is a visually intuitive tech-
nique. It is useful for spatially overlapping volumes with unrelated 
data. Our implementation allows the blending of very large arbitra-
rily overlapping multi-resolution volumes as shown in figure 7. 

Another basic technique is to combine multimodal or multi-
attribute volumes which are commonly used in the medical and in 
the oil and gas domain. Multimodal datasets, like a CT, dose and 
segmentation volume which are used in Radiotherapy Treatment 
Planning, can be visualized without resampling. And the shader 
composer enables the user to interactively explore new techniques to 
combine the volumes. 

A wide variety of techniques are possible by combining volumes 
with multi-dimensional transfer functions, figure 6 shows an 
example called visual collision detection. It could be useful in 
assembly applications, if force feedback is not available. Users 
recognize immediately, if opaque blue collisions appear between red 
and green transparent parts. 

In the oil and gas domain, seismic surveys of subsurface 
structures produce extremely large volumes with different attributes. 
Geologists use cross plots of multiple attributes to classify the types 
of rock layers as shown in figure 9. Additionally, in regions with oil 
production the seismic survey is repeated from time to time, to 
evaluate the impact of the oil production to the subsurface structures. 

We use our approach to visualize the differences between those 
extremely large time-varying volumes. However, due to 
confidentiality reasons we are not allowed to show images of real 
seismic volumes. An example of time step differences of turbulence 
data is shown in figure 8. 

Table 1 contains timings of some figures. All numbers were 
measured with a slice distance of one voxel in a 512 x 512 window 
on an Intel Core 2 Duo E6600 with NVIDIA GeForce 8800 GTX 
SLI. Geometry is the time to cut all polyhedrons and to create the 
slices of the proxy geometry. The other columns are the render times 
for separate volumes, for enabled multi-volume rendering, and for 
additional on-the-fly calculated gradients and phong lighting. The 
render times include sorting with depth peeling with approx. 0.5 ms 
per peeling pass. The geometry is prepared during rendering, so the 
frame rate is approx. 1000 / max (geometry time, render time). The 
numbers indicate that both the CPU and GPU can be the bottleneck, 
which depends mainly on the slice distance, the number of lens 
fragments and the shader complexity. 

 Geometry Separate Multi-Volume Lighting 
Figure 1 25.5 ms 11.3 ms 12.9 ms 78 ms 
Figure 5 10.2 ms 4.2 ms 4.9 ms 29 ms 
Figure 6 5.2 ms 4.5 ms 5.3 ms 35 ms 
Figure 7 226 ms 11.1 ms 29.4 ms 99 ms 

Table 1. Timings of some figures.  

Fig. 6. A sphere volume with 256 x 256 x 256 voxels intersects an 
engine dataset with 256 x 256 x 128 voxels. A two-dimensional trans-
fer function has been defined to visualize the sphere in transparent red
and the engine in transparent green. The intersected part has been
set to opaque blue. We call this technique “visual” collision detection. 

Fig. 7. Two multi-gigabyte volume datasets intersect each other. A transfer function is applied to each volume and the results are opacity-based 
composited. The mobile phone dataset has a resolution of 1800 x 1310 x 1539 voxels and the other dataset is a real copy of 384 engines (see 
figure 6), resulting in a resolution of 1280 x 1296 x 1008 voxels. The multi-resolution representations are 4.5 GB and 2 GB in size. The shown 
configuration renders with 33.4 frames per second (fps) using two NVIDIA GeForce 8800 GTX with SLI. During movement of the viewer or the 
volumes the frame rate drops to 4.4 fps due to the proxy geometry update. The right image was rendered with enabled brick outlines. 



 

6 CONCLUSIONS AND FUTURE WORK 
We have presented a flexible multi-volume rendering and shading 
framework for large multi-resolution datasets. Our approach does not 
rely on resampling of the overlapping datasets and performs the 
sampling and composition of multiple volumes on the pixel level. 
There is no principal limitation with respect to the number of 
intersecting volume lenses and volumes. Our shader composer is an 
extensible and expressive tool for specifying the volume composition 
and rendering technique for individual lenses or the intersection of 
multiple lenses. 

Our GPU-based depth peeling technique for depth sorting of lens-
lets is an expensive operation, which may become a bottleneck for 
complex lens configurations. We are currently working on a geome-
tric solution, which uses a BSP-tree to sort lenslets in front-to-back 
or back-to-front order. This solution keeps the GPU fully available 
for volume rendering and offloads the pre-processing to the CPU. 

The new GPU-based geometry shaders allow the generation of 
proxy geometry for slice-based direct volume rendering on the GPU. 
We could use this approach to generate the slices for the lens 
fragments to avoid a CPU bottleneck for complex lens configurations 
and small brick sizes in large volumes. Due to the pipelined parallel 
streaming processor architecture of the latest GPUs, this has the 
potential of significantly improving the performance by using a 
parallel thread for this task 

Volume ray casting on the GPU has the potential to perform early 
ray termination for occluded volume areas as well as empty space 
skipping. However empty space may only be skipped if it does not 
affect overlapping volumes, e.g. occurring for clip volumes. Efficient 
early ray termination might be difficult to achieve due to the large 
number of lens fragments generated for multi-resolution volumes. 
Particularly challenging is the use of quality-enhancing pre-
integration techniques for adaptive volume ray casting of multiple 
multi-resolution volumes with interactively specified compositing 
and shading behaviour. 
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