
A Flexible Multi-Volume Shader Framework
for Arbitrarily Intersecting Multi-Resolution Datasets

John Plate, Thorsten Holtkaemper, Bernd Froehlich

Abstract—We present a powerful framework for 3D-texture-based rendering of multiple arbitrarily intersecting volumetric
datasets. Each volume is represented by a multi-resolution octree-based structure and we use out-of-core techniques to support
extremely large volumes. Users define a set of convex polyhedral volume lenses, which may be associated with one or more
volumetric datasets. The volumes or the lenses can be interactively moved around while the region inside each lens is rendered
using interactively defined multi-volume shaders.

Our rendering pipeline splits each lens into multiple convex regions such that each region is homogenous and contains a fixed
number of volumes. Each such region is further split by the brick boundaries of the associated octree representations. The
resulting puzzle of lens fragments is sorted in front-to-back or back-to-front order using a combination of a view-dependent octree
traversal and a GPU-based depth peeling technique. Our current implementation uses slice-based volume rendering and allows
interactive roaming through multiple intersecting multi-gigabyte volumes.

Index Terms—Multi-volume visualization, constructive solid geometry, shading, display algorithms.

1 INTRODUCTION
Modern data acquisition and simulation methods can generate
multiple huge volume data sets representing different attributes or
temporal snapshots of a single object or region in space. These data
sets often have different resolutions and different coordinate systems,
which are spatially overlapping, but not spatially aligned.
Resampling these volumes onto a single multi-attribute grid is often
not desirable due to many possible reasons, e.g. only partial spatial
overlapping volumes, pre-processing time, numerical inaccuracies or
data bloat if the original resolutions are quite different.

We developed a real-time rendering framework for dealing with
multiple multi-resolution volume datasets, which are spatially
overlapping. These datasets are explored using polyhedral lenses,
which are associated with one or more volumes (see figure 1). Our
geometry pipeline splits each lens into multiple homogenous
volumetric regions. Each such region is inserted into the associated
octree-based multi-resolution representations and further split at the
brick boundaries. The resulting puzzle of lens fragments is sorted in
front-to-back or back-to-front order using a combination of a view-
dependent octree traversal and a GPU-based depth peeling technique.
The rendering technique for overlapping volumes is specified by our
graphical shader composer interface, which generates individual
shader code for intersecting volumetric regions.

Our work is motivated by oil and gas visualization applications,
where datasets are typically very large – in most cases exceeding the
memory on the graphics card and even the main memory. In the past,
multi-resolution out-of-core techniques have been developed to deal
with such demanding requirements, e.g. [7][8]. However these
approaches do not deal with multiple intersecting volumes, which are
becoming more common. One example are seismic surveys which
may be performed in regular intervals in oil producing regions to
estimate the topological changes due to the exploitation and to plan
new wells. Due to advancements in acquisition and processing
technologies, more recent data sets are generally of much higher
resolution and may also reach deeper into the earth and cover a

larger area than older surveys. In addition different acquisition
technologies provide attributes at differing resolutions. Ideally all the
acquired information should be available to the geo-scientists in its
best representation.

The two main contributions of our work are an approach for
multi-volume rendering for arbitrarily intersecting multi-resolution
datasets and a flexible shader framework for specifying the rendering
behavior in overlapping volume regions. We describe our rendering
pipeline, which requires extensive slicing and cutting operations on
the volume lens geometries down to the brick level of the multiple
multi-resolution volume representations. Our shader composer is a
powerful interactive visual editor for specifying the rendering
behavior for multiple overlapping volumes. The shader composer
generates individual shader programs for each homogeneous volume
region consisting of one or more volumes. Thus mono and multi-
volume regions are each handled efficiently. Our implementation
confirms that real-time rendering of multiple large volumes using
complex compositing behavior has become possible on modern
graphics processing units.

2 RELATED WORK
In this section we will focus on previous work aimed at multi-
volume rendering and in particular on contributions that deal with
intersecting volume datasets.

Most work on multi-volume rendering was done in the field of
medical visualization. After spatial registration multi-modal volume
datasets are visualized simultaneously to provide the advantages of
the different modalities in a single picture. Several publications deal
with the task of merging the different volume data sources. In [1]
Jacq and Roux introduce a multi-volume ray casting algorithm that
merges for each sample position the sample values for every volume
by applying a maximum, minimum, or an average operator. Similar
to that Wilson at el. propose in [2] so-called data fusion schemes for
hardware accelerated slice-based volume rendering, which either
alternately sample the different volume data sets, or combine for
each sample position the weighted sample values, or distribute them
into different color channels. A detailed proposal of several volume
intermixing schemes is given by Cai and Sakas in [3]. The proposed
methods are divided into the three categories of image, illumination
and accumulation level intermixing, which define different data
merging points in a ray casting multi-volume rendering pipeline. In
[4] Rößler et al. introduce an interactive slice-based volume
rendering frame work for multiple volumes, which intermixes slices
of volumes by depth sorting. Each volume is assigned its own GPU
shader, which is applied to all fragments of the associated slices.

• John Plate is with Fraunhofer IAIS and Bauhaus-Universität Weimar,

E-Mail: john.plate@iais.fraunhofer.de.
• Thorsten Holtkaemper is with Fraunhofer IAIS, Sankt Augustin,

E-Mail: thorsten.holtkaemper@iais.fraunhofer.de.
• Bernd Froehlich is with Bauhaus-Universität Weimar,

E-Mail: bernd.froehlich@medien.uni-weimar.de.

So far all approaches only deal with spatially aligned volume
datasets, which could be also considered as a single multi-attribute
dataset. In contrast Nadeau [5] introduces the concept of a volume
scene graph, which can contain multiple volume datasets and space-
filling functions at arbitrary positions in space. Multiple volumes can
intersect in arbitrary ways. They are combined by group nodes,
applying a composition function, which can be chosen from imaging,
constructive solid geometry (CSG), and math operators. For
rendering the volume scene graph it is evaluated for all voxel
positions on a world volume grid. This evaluation is costly and needs
to happen every time the positions of the volume change with respect
to each other. The resulting regular volume can be displayed by any
conventional volume rendering algorithm for single volumes. No
multi-resolution or out-of-core functionality is supported.

Grimm et al. [6] developed a parallel CPU-based ray casting
algorithm for multiple non-aligned volume objects, which they call
V-Objects. This approach is closest in functionality to our approach.
It is discussed in detail in section 3.3 once more details about our
algorithm are introduced.

Our work is based on Octreemizer [7], a 3D-texture-based ap-
proach for interactive visualization of very large volumetric datasets.
Octreemizer uses a two-level predictive paging approach (hard disk
to main memory and main memory to texture memory) with several
tiled (bricked) and hierarchically arranged resolution levels. It allows
users to roam through large volumetric datasets in real-time with low
memory requirements. Octreemizer can only handle a single multi-
resolution volume including out-of-core functionality. For multi-
volume rendering we use some of the original Octreemizer func-
tionality to manage individual volumes and we prepare the required
proxy geometry for slice-based direct volume rendering using our
extended geometry pipeline described in the following section.

Fig. 1. A seismic dataset (512 x 512 x 512 voxels) is overlapping with
two high resolution clip volumes containing a sphere. Inside the
spheres additionally different transfer functions are applied to
emphasize low and high seismic amplitudes (blue and red) in the
intersected regions. If the spheres overlap, low and high amplitudes
are both visible. Phong lighting with two light sources is applied.

3 GEOMETRY PIPELINE
Octreemizer uses volume and lens objects to define regions of
interest. The geometry pipeline trims, cuts and slices the lenses as
shown in figure 2 to generate the proxy geometry needed for sliced-
based rendering. A first step trims the lenses with respect to the view
frustum and different volume boundaries. Then homogeneous lens
sections are created, which contain a fixed number of volumes.
These regions are inserted into the multi-resolution octree represen-
tations described in [7] by further splitting them at the brick boun-
daries. Finally, the resulting lens fragments are sorted in front-to-
back or back-to-front order and composited by slice-based rendering.

3.1 Volumes and Lenses
A volume contains the bricked multi-resolution volume data in an
octree hierarchy and information about its position, orientation and
size. A lens consists of one ore more convex polyhedrons, which
define the regions of the volume data that will be displayed. A lens
may also contain convex polygons, which define slices through the
volume. We will not further discuss these polygonal slices, though
they are supported in the entire geometry pipeline.

Lenses have associated states including:
• Transformation: Position, orientation and size. Can be

“locked” to other volumes or lenses in order to group and
simultaneously drag multiple objects.

• Transparent Mode: Toggles whether the lens should be
completely opaque or the transparency information from the
shader stage should be used.

• Slice Distance: The slice distance for slice-based rendering.
Each lens can be associated with a single or multiple volumes.

The areas of the associated volumes intersecting the lens will be
rendered. The lens in figure 2a has been associated with two volumes
and it intersects both. Lenses without associated volume may be used
as clip lenses in order to geometrically clip away intersections with
other lenses. Of course a lens may contain only a single polyhedron,
which entirely encloses all associated volumes. As expected this
configuration renders the complete volume data sets.

3.2 Clipping at View Frustum and Volume Boundaries
In a first step the lenses are clipped against the view frustum and the
volume boundaries. We create these “trimmed” lenses for each
combination of a lens and an associated volume. The polyhedrons of
a lens are transformed by the lens’ transformation matrix and clipped
at the view frustum and the volume boundaries. The resulting
polyhedral parts residing in a single volume define the trimmed lens.
Figure 2b shows two trimmed lenses created from one lens that
intersects two volumes. The trimmed lenses are updated only if
necessary, e.g. when the relative transformation between the source
lens and the volume changes.

3.3 Considering Overlapping Volumes
Now that we have the parts of the lenses residing inside each
associated volume we have to identify the lens regions where
multiple volumes intersect. We generate separate convex poly-
hedrons, which represent regions with a fixed set of overlapping
volumes.

Our lenses are similar to Grimm et al.’s [6] V-Objects which are
associated with a volume data source and comprise visual properties
and a transformation matrix. They use a parallel software ray casting
scheme for rendering multi-volume scenes without out-of-core
functionality or multi-resolution support. Their rendering approach is
speed up by decomposing each ray into mono-volume and multi-
volume segments. The mono-volume segments of multiple rays are
processed in brick-wise order for cache efficiency. Multi-volume
segments sequentially sample and blend all associated volumes. Our
approach uses hardware-accelerated slice-based rendering to render
multiple volumes including out-of-core functionality for each
volume. We split the volumes – instead of individual rays – into
homogenous regions containing a particular subset of the considered
volumes. Since we use a multi-resolution approach, this splitting has
to be also considered within the multi-resolution hierarchy of each
contributing volume creating brick fragments at different octree
resolutions. Grimm et al. use ray intersections to identify mono- and
multi-object regions. This approach has several disadvantages in our
context:

• The ray entry and exit points are calculated using octree
projections. This is efficient for GPU-based ray casting, but
in this case the points are additionally needed by the CPU for
a depth sort, which would require expensive read backs from
the graphics board.

Octree distribution

Fig. 2. Geometry pipeline

a)

Lens

Volume

b)

• A depth sort of all entry and exit points is necessary to
determine the mono- and multi-object segments. Complex
scenes can contain millions of those points.

• The algorithm cannot be easily adapted to other rendering
techniques than ray casting.

Also, it would have been possible to integrate existing libraries,
like CGAL [9], and to use CSG algorithms, like Boolean operations
on nef polyhedrons [10][11]. These operations are flexible, powerful
and stable, but also much slower than our algorithm, which does not
need this flexibility and thus benefits from optimizations that depend
on specific constraints, e.g. simplified data structures, convex
polyhedrons, no open boundaries, no dangling facets. We compared
our algorithm with CGAL by measuring the time needed to calculate
the Boolean intersection and differences of two overlapping cubic
polyhedrons on an Intel Core 2 Duo E6600. For different
orientations, our algorithm needed between 40 and 90 microseconds,
while CGAL needed between 90,000 and 820,000 microseconds.

3.3.1 Lenslets
Lenslets are homogenous convex polyhedral regions, which are
associated with a fixed set of volumes. Lenslets do not intersect each
other. They are generated by intersecting the polyhedrons of the
trimmed lenses associated with different volumes with each other
(see figure 2c) followed by additional split operations to guarantee
convexity. If only spatially separated lenses would be used to define
how the associated volumes are rendered, it would be sufficient to
find the intersections between the trimmed lenses of each source
lens. However, we decided to support overlapping lenses and
compute the intersections between all existing trimmed lenses and
allow users to define the rendering behavior in these overlapping
lens regions. We use the following algorithm to compute the lenslets:

lenslets.remove(outdated lenslets)
FOREACH lens IN new or updated trimmed lenses
{
 test_lens_set = lens
 WHILE intersect_lens = lenslets.
 find_intersecting_lens(test_lens_set)
 {
 lenslets.add(test_lens_set ∩ intersect_lens)
 lenslets.add(intersect_lens – test_lens_set)
 lenslets.remove(intersect_lens)
 test_lens_set = test_lens_set - intersect_lens
 }
 lenslets.add(test_lens_set)
}

Figure 2c shows an example of the results of the Boolean opera-
tions used in this algorithm. It also shows that the Boolean difference
can be non-convex. Figure 2d demonstrates how additional cuts
ensure convex polyhedrons, which are required by our geometry
pipeline. These operations are not explicitly mentioned in the above
algorithm for simplicity. Additionally, our implementation does not
generate the two Boolean differences and the intersection in three
separate steps. Instead, we use an intersection operation that creates
additionally the two Boolean differences by intersecting each poly-
hedron with each face plane of the intersecting polyhedron.

The lenslets contain references to their “parent” trimmed lenses,
from which they have been constructed. Additionally, the trimmed
lenses reference their “child” lenslets and all the intersected trimmed
lenses. With these references, it is possible to find and remove all
outdated lenslets, which is necessary if a trimmed lens has been
updated (e.g. moved around). Thus only a minimum number of
lenslets have to be reconstructed during interactive operations.

Trimmed Lenses

Trim1

Trim2

Lenslets

c)

Lenslet3 =

Lenslet2 =

Lenslet1 =
Trim1 – Trim2

Trim1 ∩ Trim2

Trim2 – Trim1

Convex Polyhedrons
Additional cuts

d)

Bricked Polyhedrons

e)

Multi-Volume

f)

Sliced Brick-Level Lens

View Direction

3.3.2 Intersection Details

Fig. 3. Depth peeling

a)

Viewer

Opaque object

occluded

We use the Sutherland-Hodgman polygon clipping algorithm [12] to
efficiently construct Boolean intersections and differences of
polyhedrons. Our implementation uses the following objects for
efficient and numerically stable handling of these operations:

• Vertex: A set of three coordinates.
• Vertex Pool: A set of vertices.
• Plane: Parameters from a plane equation.
• Plane Pool: A set of planes.
• Polygon: A plane index and a set of vertex indices.
• Polyhedron: A set of polygons and a bounding box.
We construct planes from every source polygon in the scene

(faces of polyhedrons, volume data sets and view frustum) and store
them in a plane pool. The polygons that are used and constructed
during the intersection stage contain a reference to coplanar planes.
Additionally, the polygons generated from a polyhedron contain a
reference to their outward facing normal.

The plane pool has two advantages. First, it speeds up the
intersection checks. If two polygons of two different polyhedrons
reference the same plane, we know immediately, that each of the two
polygons does not intersect with the other polyhedron. Additionally,
if the normals are facing in different directions, the associated
polyhedrons themselves do not intersect each other. The second
advantage concerns numerical problems: Without the plane
references, intersection calculations of two contacting polyhedrons
would often fail due to limited floating-point precision.

3.4 Bricking Lenslets
This stage is required to support bricked volumes. The lenslets have
to be cut further at the brick boundaries, because the rendering stage
accesses only a single brick (3D texture) of a volume at a time. We
call the brick-sized lens polyhedrons lens fragments.

3.4.1 Recursive Octree Insertion
The lenslets maintain references to their source trimmed lenses and
therefore their associated volumes. We add each lenslet to the
associated volume object of the first trimmed lens: The lenslet
polyhedron is transformed to the coordinate system of the volume
and added to the root brick of the octree hierarchy. Then they are
recursively inserted into the child bricks. During this insertion, the
polyhedrons are split at the brick boundaries. Based on the
Sutherland-Hodgman polygon clipping algorithm, we have
developed an algorithm which efficiently splits polyhedrons
simultaneously at three orthogonal axis-aligned planes. The basic
idea is to map the vertices directly to octants instead of half-spaces,
and to create a new polyhedron from all vertices in each octant and
the line intersections with the octant boundaries. The split
polyhedrons from the eight octants are added to the child bricks.
Bricks without polyhedrons (and their children) will not be
considered during the rendering stage.

3.4.2 Dealing with Multiple Octrees
If a lenslet references multiple volumes, we have to split it at the
brick boundaries of all these volumes. The marked lenslet in
figure 2e is an example for this case. Cutting at brick boundaries of
multiple volumes is an expensive operation, but it is necessary,
because every part of the resulting “puzzle” has to be rendered with a
different combination of active bricks.

We start with the brick-level lens fragments from the insertion of
the lenslets into the first volume. During the draw traversal of the
first octree, the polyhedrons in each brick are transformed to the
coordinate system of the next volume, added to its root brick and
inserted into its octree. This is repeated for all volumes associated to
a lenslet. We perform these second level traversals (and the proxy
geometry generation described in the next section) during the
rendering stage, interleaved with the brick rendering traversal. This
way the CPU is able to prepare the geometry of a brick, while the
geometry of the previous brick is still rendered by the GPU.

Full pixel count

Full

lenslet

b)

Front pixel count

Fig. 4. Depth peeling algorithm

Viewer

Opaque object

Not in
front

disable writing to color buffer
enable depth test
disable writing to depth buffer
enable back face culling
create unsorted list of all polyhedrons
draw unsorted list and count pixels unoccluded
 by opaque scene for each polyhedron
 (full pixel count, figure 2a)
remove all fully occluded polyhedrons
WHILE unsorted list has more than one element
{
 copy main depth to separate depth buffer
 activate separate depth buffer
 enable writing to separate depth buffer
 draw unsorted list
 disable writing to depth buffer
 set depth test function to EQUAL
 draw unsorted list and count pixels of each
 polyhedron (front pixel count, figure 2b)
 reset depth test function to LESS
 FOREACH polyhedron in unsorted list
 {
 IF front pixel count == full pixels count
 {
 remove polyhedron from unsorted
 and append to sorted list
 }
 }
 IF no geometry was moved
 {
 remove most visible polyhedron from
 unsorted and append to sorted list
 }
 activate main depth buffer
}
append unsorted list to sorted list
enable writing to color buffer

3.5 Proxy Geometry
At this point, we have polyhedrons at the brick level, or intersected
brick level for multiple volumes. We now create the proxy geometry
needed by the selected rendering technique.

In case of ray casting [13], the polyhedrons can be used directly
to obtain the ray entry and exit points. In case of slice-based volume
rendering (SBVR) [14], which we use in our current implementation,
we create slices orthogonal to the view direction and clip them at the
polyhedron faces (see figure 2f). The slice distance is controlled by
the sample distance setting of the associated lens. If two contacting
polyhedrons have the same slice distance, the slice offset is also the
same to avoid rendering artifacts at the border.

3.6 Sorting
For correct rendering results the transparent parts of the scene have
to be sorted. The order (back-to-front or front-to-back) depends on
the selected rendering and compositing technique.

The polyhedrons at brick level are sorted on-the-fly during the
view-dependent recursive octree traversal. For perspective projec-
tions we simply identify the octant which contains the viewer. For
orthogonal projections we identify the octant which contains the
vector which originates at the brick center and points in direction of
the positive Z-axis in eye space coordinates. The polyhedrons of the
child brick in this octant have to be rendered last (or first). The other
child bricks are sorted by their L1-distance.

Sorting the polyhedrons at the lenslet level is a more difficult
task. Since simple sort by viewer distance is not sufficient, we have
developed a GPU-based depth peeling technique to reliably find an
occlusion-preserving rendering order. We use a separate depth buffer
and OpenGL occlusion queries for the algorithm shown in figure 4.
It counts the front pixels of each polyhedron (see figure 3b) and
removes the front layer of polyhedrons which are not occluded by
other polyhedrons in each step. The sequence of layers forms a front-
to-back sorted list.

As a side effect, we get free occlusion culling, because we have
to initialize the full pixel count for each polyhedron as shown in
figure 3a and we always initialize the depth buffer with the main
depth buffer, which holds the depth information of the opaque parts
of the scene. We do not draw polyhedrons with a pixel count less
than a given threshold.

As the polyhedrons do not intersect each other, there is
theoretically always at least one in front. Due to limited floating
point precision, it is possible that there is none. In this case we find
the most visible polyhedron (highest ratio of front pixel to full pixel
count) and move only this one to the sorted list.

4 MULTI-VOLUME SHADER FRAMEWORK
Rendering a region with multiple intersecting volume data sets
requires defining a data compositing technique. In this section we
describe the techniques we have developed to overcome the
limitations of commonly used techniques, such as:

• Interleaved slices: View-aligned slices are created
independently for each volume and blended to the
framebuffer in an interleaved order [4]. The technique
introduces opacity errors and does not allow combining the
sampled values.

• Color channels: The intensity values of up to three volumes
are combined by using the color channels red, green and blue
[2]. Only scalar transfer functions can be used.

4.1 Interactive Shader Composer
We developed an interactive shader composer, which allows creating
special purpose GPU-based shader programs by interactively
plugging data flow widgets together using a graphical user interface
(GUI). Figure 5 shows an example configuration of a shader compo-
ser. Of course multiple shader composers can exist simultaneously.

4.1.1 Shader Composer GUI
The GUI consists of data flow widgets, called nodes, which have
input fields on the top and/or output fields on the bottom. There are
single-component fields, e.g. red, green, blue, alpha (opacity), and
multi-component fields, e.g. RGBA, XYZW or gradient vector. Field
connections are defined by drag and drop operations, which connect
compatible fields. A connection from a single to a multi-component
field is possible, but not vice versa as it would be ambiguous. The
field connections are displayed as red or green lines. The color
indicates if the data flow is valid. For example, the data flow from
the “Inverse” node in figure 5 is invalid, because it has no input
connection. If at least one green line reaches the output node, the
shader is “complete” and can be used by the rendering stage.

The composer GUI consists initially of a “ColorOut” node, which
represents the final combined sample value. The user connects the
composer to one or more lenses, which are described in section 3.1.
Based on these connections, the composer creates input nodes: One
lens node with a statically connected volume node for each volume
which is associated with a connected lens. The latter is necessary
because a single lens can have multiple associated volumes, and the
lens node output fields are needed for every volume. The lens nodes
are required if the user wants to create different shaders for different
regions of a volume or in conjunction with other lenses.

4.1.2 Basic Shader Composer Nodes
The basic input/output composer nodes are:

• ColorOut: The RGBA value of this node is passed to the
active fragment shader program.

• Volume: Represents a volume associated with one or more
connected lenses.

• Lens: Represents a lens connected to the composer. It has a
statically connected volume node and offers an RGBA
output field for the sampled volume element of the connected
volume. Additionally, there are fields for single components.

4.1.3 Extensible Shader Composer Nodes
The following composer nodes can be used to define the data flow of
the shader program. The node class hierarchy is modular and can be
easily extended.

• Palette: A one or two dimensional transfer function.
• Lookup: Performs a color lookup in the connected palette.
• Gradient: Calculates a gradient vector on-the-fly.
• Light: An illumination model and parameters.
• Lighting: Applies one ore more lights to the input color.
• Operator: The user can switch between blend, product, sum,

minimum, maximum, inverse and negative, and between 1,
2, 3 or 4 components.

• Constant: Outputs a single static value.
Most of the selectable operations of the operator node are self-

explanatory. The operation that we call blend has been described as
“inclusive opacity” by Cai and Sakas [3] for two volumes. It sums up
the accumulative effect caused by the opacities from multiple
volumes and applies it as the opacity to the current point. The
resulting opacity and intensity for n volumes is:

∏
=

−−=
n

k

kopacityopacity
1

11

∑

∑

=

== n

1k
k

1
kk

opacity

intensity opacity
intensity

n

k

Another operation that we call “inverse” calculates:
operandinverse −=1

This inverts the numerical range [0, 1] and is useful to invert
color and opacity values.

4.1.4 Recursive Shader Generation
For each lenslet that should be rendered, we need a shader program
that matches with the intersected lenses referenced by the lenslet. To
generate this program, we first identify a shader composer that can
be used for the lenslet. This is the case if a composer has connections
to every lens from which the lenslet has been constructed.

Second, the shader composer generates a unique shader code
identifier depending on the defined data flow and the combination of
intersected lenses. The composer requests the shader code identifier
from the ColorOut node. Though the composer visualizes the data
flow from the input nodes to the output node, the resulting shader
code identifier is generated using the opposite direction. The
ColorOut node initiates a recursive traversal back to the input nodes
to determine the branches with valid data flow. In a second traversal
along the valid data flow, each node adds a specific identifier
fragment to the code identifier.

In the third step, we search in a list of cached fragment shader
programs for the shader code identifier. If it is not found, we create
new fragment shader code which is well-defined by the code
identifier, and compile a new fragment shader program, which is
added to the list of cached programs. Thus the shader code identifier
avoids the repeated generation of fragment shader code for each
lenslet in every frame.

Compiling shader programs on-the-fly is an expensive operation,
but a single flexible fragment shader program could be too complex
for current GPUs and would be much slower than the specialized
programs. It is also impossible to prepare and store all possible
specialized programs, because their number is infinite. Though
compiling a shader program needs up to 50 ms, the user typically
does not notice it while paying attention to the shader composer.

4.2 Multi-Volume Illumination
Our implementation supports the Phong lighting model to illuminate
volumes with one or more light sources. We use the normalized
negative opacity gradient as the surface normal for the diffuse and
specular reflection.

In the shader composer GUI, the user creates a light node to
specify the parameters for the Phong lighting. The light node has a
gradient input field, from which it calculates the surface normal. The
gradient field is usually connected to a gradient node, which can be
connected to any single component output field in the data flow. In
figure 5, it is connected to a sum node. During the recursive shader
generation, the gradient node adds a flag to the traversal, indicating
that it does not need the data value at the current location, but the
data values at six axis aligned offset locations. From these six values,
the resulting shader program will calculate the central differences
and the gradient.

The gradient node enables the user to determine the gradient at
any point in the data flow. If users combine one or more volumes
with one or more operations like blend, product or transfer function
lookup, they might want to apply lighting using the gradient of the
effective opacity. As these operations are defined interactively, it is
not possible to precalculate these gradients.

Finally, a lighting node applies the illumination of one or more
light nodes to the connected color data flow. The lighting node in
figure 5 applies two lights.

4.3 Default Shader Composer
We maintain a default shader composer, which is automatically
connected to every existing lens. If no user-defined composer
matches with the lenses referenced by a lenslet, the default composer
will be used. Thus the user does not have to create composers for
trivial and simple shader configurations.

Initially, the default composer renders single volumes using
opacity-based compositing without any additional operations.
Regions with multiple intersecting lenses are combined by a blend
operation. We have selected it as the default composition technique,

because it produces a kind of blending that most users would expect
for overlapping transparent volumes.

Fig. 5. A shader composer example. Top left: Four overlapping sphere
volumes; moved, resized and stretched. Two of them have resolutions
of 256 x 256 x 256 voxels and the small two have 64 x 64 x 64 voxels.
Top right: The same volumes with enabled shader composer. Bottom:
The shader composer GUI. Three volumes are subtracted from the
biggest sphere volume, thus they act as clipping volumes. Two lights
are applied to the resulting sum. The final shape is yellow because the
blue color component is not connected to the ColorOut node.

The lenses described in section 3.1 have additional states to
influence their operations in the default composer. It is possible to
add a transfer function, which will be applied to the lens prior to the
combination with intersecting lenses. It is also possible to select
another operation than blending for the composition of lens regions.
The order of these operations is pre-defined. The default composer is
additionally able to add lights after the combination operations. If the
functionality of the default composer is not sufficient, e.g. users need
additional operations or a different order of operations, a user-
defined composer is required.

5 RESULTS AND DISCUSSION
Our multi-volume shader framework can be used in many ways and
in different domains. We will focus on some basic techniques and
describe some domains which could benefit form our work.

One of the basic techniques is volume clipping. Volumes can be
clipped with arbitrarily shaped clip objects, if they are voxelized as
proposed by Weiskopf et al. [15]. An example is shown in Figure 5.
This technique can be easily extended using the shader composer.
For example, only selected color channels could be clipped away.
Figure 1 demonstrates another extension. We use additionally the
inverted sample value of the clip object volume to apply different
shader behavior for the in- and outside of the clip object. Thus it is
possible to emphasize regions with different transfer functions.

Opacity-based volume composition is a visually intuitive tech-
nique. It is useful for spatially overlapping volumes with unrelated
data. Our implementation allows the blending of very large arbitra-
rily overlapping multi-resolution volumes as shown in figure 7.

Another basic technique is to combine multimodal or multi-
attribute volumes which are commonly used in the medical and in
the oil and gas domain. Multimodal datasets, like a CT, dose and
segmentation volume which are used in Radiotherapy Treatment
Planning, can be visualized without resampling. And the shader
composer enables the user to interactively explore new techniques to
combine the volumes.

A wide variety of techniques are possible by combining volumes
with multi-dimensional transfer functions, figure 6 shows an
example called visual collision detection. It could be useful in
assembly applications, if force feedback is not available. Users
recognize immediately, if opaque blue collisions appear between red
and green transparent parts.

In the oil and gas domain, seismic surveys of subsurface
structures produce extremely large volumes with different attributes.
Geologists use cross plots of multiple attributes to classify the types
of rock layers as shown in figure 9. Additionally, in regions with oil
production the seismic survey is repeated from time to time, to
evaluate the impact of the oil production to the subsurface structures.

We use our approach to visualize the differences between those
extremely large time-varying volumes. However, due to
confidentiality reasons we are not allowed to show images of real
seismic volumes. An example of time step differences of turbulence
data is shown in figure 8.

Table 1 contains timings of some figures. All numbers were
measured with a slice distance of one voxel in a 512 x 512 window
on an Intel Core 2 Duo E6600 with NVIDIA GeForce 8800 GTX
SLI. Geometry is the time to cut all polyhedrons and to create the
slices of the proxy geometry. The other columns are the render times
for separate volumes, for enabled multi-volume rendering, and for
additional on-the-fly calculated gradients and phong lighting. The
render times include sorting with depth peeling with approx. 0.5 ms
per peeling pass. The geometry is prepared during rendering, so the
frame rate is approx. 1000 / max (geometry time, render time). The
numbers indicate that both the CPU and GPU can be the bottleneck,
which depends mainly on the slice distance, the number of lens
fragments and the shader complexity.

 Geometry Separate Multi-Volume Lighting
Figure 1 25.5 ms 11.3 ms 12.9 ms 78 ms
Figure 5 10.2 ms 4.2 ms 4.9 ms 29 ms
Figure 6 5.2 ms 4.5 ms 5.3 ms 35 ms
Figure 7 226 ms 11.1 ms 29.4 ms 99 ms

Table 1. Timings of some figures.

Fig. 6. A sphere volume with 256 x 256 x 256 voxels intersects an
engine dataset with 256 x 256 x 128 voxels. A two-dimensional trans-
fer function has been defined to visualize the sphere in transparent red
and the engine in transparent green. The intersected part has been
set to opaque blue. We call this technique “visual” collision detection.

Fig. 7. Two multi-gigabyte volume datasets intersect each other. A transfer function is applied to each volume and the results are opacity-based
composited. The mobile phone dataset has a resolution of 1800 x 1310 x 1539 voxels and the other dataset is a real copy of 384 engines (see
figure 6), resulting in a resolution of 1280 x 1296 x 1008 voxels. The multi-resolution representations are 4.5 GB and 2 GB in size. The shown
configuration renders with 33.4 frames per second (fps) using two NVIDIA GeForce 8800 GTX with SLI. During movement of the viewer or the
volumes the frame rate drops to 4.4 fps due to the proxy geometry update. The right image was rendered with enabled brick outlines.

6 CONCLUSIONS AND FUTURE WORK
We have presented a flexible multi-volume rendering and shading
framework for large multi-resolution datasets. Our approach does not
rely on resampling of the overlapping datasets and performs the
sampling and composition of multiple volumes on the pixel level.
There is no principal limitation with respect to the number of
intersecting volume lenses and volumes. Our shader composer is an
extensible and expressive tool for specifying the volume composition
and rendering technique for individual lenses or the intersection of
multiple lenses.

Our GPU-based depth peeling technique for depth sorting of lens-
lets is an expensive operation, which may become a bottleneck for
complex lens configurations. We are currently working on a geome-
tric solution, which uses a BSP-tree to sort lenslets in front-to-back
or back-to-front order. This solution keeps the GPU fully available
for volume rendering and offloads the pre-processing to the CPU.

The new GPU-based geometry shaders allow the generation of
proxy geometry for slice-based direct volume rendering on the GPU.
We could use this approach to generate the slices for the lens
fragments to avoid a CPU bottleneck for complex lens configurations
and small brick sizes in large volumes. Due to the pipelined parallel
streaming processor architecture of the latest GPUs, this has the
potential of significantly improving the performance by using a
parallel thread for this task

Volume ray casting on the GPU has the potential to perform early
ray termination for occluded volume areas as well as empty space
skipping. However empty space may only be skipped if it does not
affect overlapping volumes, e.g. occurring for clip volumes. Efficient
early ray termination might be difficult to achieve due to the large
number of lens fragments generated for multi-resolution volumes.
Particularly challenging is the use of quality-enhancing pre-
integration techniques for adaptive volume ray casting of multiple
multi-resolution volumes with interactively specified compositing
and shading behaviour.

REFERENCES
[1] J. Jacq, C. Roux. “A Direct Multi-Volume Rendering Method Aiming at

Comparisons of 3-D Images and Models”. IEEE Transactions on
Information Technology in Biomedicine, Vol.1, pp. 30–43, March 1997

[2] B. Wilson, E. Lum, and K.-L. Ma. “Interactive Multi-Volume
Visualization”. Workshop on Computer Graphics and Geometric
Modeling, 2002 Conference on Computational Science, 2002.

[3] W. Cai, G. Sakas. “Data Intermixing and Multi-Volume Rendering”.
Computer Graphics Forum 18 (3), pp. 359–368, 1999.

[4] F. Rößler, E. Tejada, T. Fangmeier, T. Ertl, M. Knauff. “GPU-based
Multi-Volume Rendering for the Visualization of Functional Brain
Images”. Proceedings of SimVis 2006 , pp. 305-318, 2006.

Fig. 9. Four lenses in two overlapping seismic datasets (each with 360
x 300 x 1100 voxels) with different attributes of the acoustic
impedance and the P- to S-Wave velocity ratio. The right and bottom
lenses show separate volume values, the left uses both volumes and
a transfer function to show specific attribute combinations indicating
rock layers of interests, and the top lens combines all three.

[5] D. Nadeau. “Volume Scene Graphs”. Proceedings of the 2000 IEEE
Symposium on Volume Visualization, pp. 49-56, 2000.

[6] S. Grimm, S. Bruckner, A. Kanitsar, E. Gröller. “Flexible Direct Multi-
Volume Rendering in Dynamic Scenes”. Proceedings of Vision,
Modeling, and Visualization, pp. 379-386, 2004.

[7] J. Plate, M. Tirtasana, R. Carmona, B. Fröhlich. “Octreemizer: A
Hierarchical Approach for Interactive Roaming Through Very Large
Volumes”. Eurographics - IEEE TCVG Symposium on Visualization
Proceedings, pp. 53-60, 2002.

[8] P. Bhaniramka, Y. Demange. “OpenGL Volumizer: a toolkit for high
quality volume rendering of large data sets”. Proc. of the 2002 IEEE
symposium on Volume visualization and graphics, pp. 45-54, 2002.

[9] CGAL Editorial Board. CGAL-3.2 User and Ref. Manual, 2006.
[10] P. Hachenberger, L. Kettner. “3D Boolean Operations on Nef

Polyhedra”. CGAL Editorial Board, CGAL-3.2 User and Reference
Manual, 2006.

[11] M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, M.
Seel. “Boolean Operations on 3D Selective Nef Complexes: Data
Structure, Algorithms, and Implementation”. Proceedings of the 11th
Annual European Symposium Algorithms (ESA'03), Budapest,
Hungary. LNCS 2832, Springer, pp. 654-666, September, 2003.

[12] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes. “Computer
Graphics, Principles and Practice”. Addison-Wesley Systems
Programming Series, Addison-Wesley, 2nd ed., 1991

[13] J. Krüger, R. Westermann. “Acceleration Techniques for GPU-based
Volume Rendering”. Proceedings of IEEE Visualization 2003, pp. 287-
292, 2003.

[14] E. Swan, R. Yagel. “Slice-Based Volume Rendering”. OSU- ACCAD-
I/93-TR1, The Advanced Computing Center for the Arts and Design,
The Ohio State University, January 1993.

Fig. 8. Two intersecting volume lenses show two time steps (each with
512 x 512 x 512 voxels) of a turbulence simulation dataset. The
intersected region visualizes the difference between both time steps
with a transfer function: Regions with no velocity change are
transparent, red is increasing and blue is decreasing velocity.

[15] D. Weiskopf, K. Engel, T. Ertl. “Volume Clipping via Per-Fragment
Operations in Texture-Based Volume Visualization”. Proceedings of
IEEE Visualization 2002, pp. 93-100, October 2002.

	1 Introduction
	2 Related Work
	3 Geometry Pipeline
	3.1 Volumes and Lenses
	3.2 Clipping at View Frustum and Volume Boundaries
	3.3 Considering Overlapping Volumes
	3.3.1 Lenslets
	3.3.2 Intersection Details

	3.4 Bricking Lenslets
	3.4.1 Recursive Octree Insertion
	3.4.2 Dealing with Multiple Octrees

	3.5 Proxy Geometry
	3.6 Sorting

	4 Multi-Volume Shader Framework
	4.1 Interactive Shader Composer
	4.1.1 Shader Composer GUI
	4.1.2 Basic Shader Composer Nodes
	4.1.3 Extensible Shader Composer Nodes
	4.1.4 Recursive Shader Generation

	4.2 Multi-Volume Illumination
	4.3 Default Shader Composer

	5 Results and Discussion
	6 Conclusions and Future Work

