
Fast Normal Map Generation for Simplified Meshes
Yigang Wang

Computer School, Hangzhou Institute of Electronics Engineering, China
Bernd Fröhlich

Bauhaus-Universität Weimar, Germany
Martin Göbel

Fraunhofer-Institut fuer Medienkommunikation, Germany

Abstract

Approximating detailed models with coarse, normal mapped meshes is a very
efficient method for real-time rendering of complex objects with fine surface
detail. In this paper, we present a new and fast normal map construction
algorithm. We scan-convert each triangle of the simplified model, which results
in a regularly spaced point set on the surface of each triangle. The original
model and all these point samples of the simplified model are rendered from
uniformly distributed camera positions. The actual normal map is then created
by determining the corresponding normal vector for each point in the point set,
for which the distance between two corresponding points in image pairs over
the set of camera positions is minimal. Our approach works for general triangle
meshes and exploits fully common graphics rendering hardware. Normal map
construction times are generally in the range of only a few seconds even for
large models. We render our normal-mapped meshes in real-time with a
slightly modified version of the standard bump-mapping algorithm. In order to
evaluate the approximation error, we investigate the distance and normal errors
for normal-mapped meshes. Our investigation of the approximation errors
shows that using more than twelve view points does not result in a further
improvement the normal maps for our test cases.

1. Introduction

Simplification of triangle meshes has been an active area of research in
computer graphics. Various groups [4]-[8] have shown that texture- and
normal-map-based representations can efficiently preserve the geometric and
chromatic detail of the original model. Recent graphics cards support these
techniques in hardware and allow single pass real-time rendering of complex
texture and normal mapped geometry.

Only few methods have been proposed for generating normal maps [4]-
[8]. These methods usually scan-convert each triangle of the simplified model
to obtain a regularly spaced point set. The corresponding normals are computed

from the high resolution model and they are packed into a rectangular array -
the normal map. The main issue is the construction of a mapping from the
simplified model to the original model to calculate the corresponding normal
for each point of the normal map. Two approaches have been suggested for
solving this problem. One approach directly computes the corresponding
normal vector for each point of the normal map[5][6]. The other approach
assigns the corresponding normal vectors by parameterizations [7][8].
However, these methods are rather time-consuming for large models.

In this paper, we present a new method, which makes great use of
common graphics rendering hardware to accelerate the normal map
construction. In our method, the scan-converted point set of the simplified
mesh’s triangles and the corresponding original model are rendered from
uniformly distributed camera positions. The actual normal map is then create
by updating corresponding normals for each point in the point set, for which
distance between two corresponding points in image pairs for the set o
positions is minimized. Similar to [9], the distance is estimated from Z-buffer
entries. A clear limitation of our method is the requirement that all the faces o
a mesh need to be seen from at least one viewpoint. There are several solutions
to this problems, including resorting back to other more time-consuming
methods such as [5][6] for these critical areas. Our method works as a post-
process of a simplification. It can be combined with any existing simplificat
method even if the topology changed during the simplification pr

d
 the

f camera

f

ion
ocess.

We have tested our algorithm for various large models and show that high
quality normal maps for complex objects can be generated on standard PC
hardware within a few seconds. Our implementation of normal-map-based
rendering makes use of Nvidia’s GeForce3 and GeForce4 graphics cards, which
allow the representation of normal maps with 16 bit per component. Our error
analysis indicates that twelve views are in most cases enough for generating
high quality normal maps.

2. Creating normal maps

Normal maps for height fields can be generated from a single view point
(Figure 5). General meshes require the information from multiple view points
from around the model. The whole normal map construction algorithm can be
described in the following way:

Normalmap
constructNormalMap(Model simplified_model, Model original_model)
{

 normalmap = simplified_model.scanConvert();
 //scan convert each face and
 //pack points into rectangular array.
 simplified_model.formNormalmapCoordinates();
 //normal map coordinates
 //are computed according to the packing method.
 normalmap.intialize(simplified_model);
 //set the initial values as interpolated values from
 //vertex normal vectors of the simplified model, and
 //set the initial distance value as the maximal float value.
 original_model.convertNormalToColor();
 for(int viewpoint =0; viewpoint < max_view_num; viewpoint++)
 {
 setTransformation(viewpoint);
 original_model.render(); //with colors mapped from normals
 readZbuffer(zBufferS);
 readColorBuffer(cBufferS);
 for(int i=0; i<normal_map.sampleNumber(); i++)
 {
 vector t = projectToScreen(normalmap(i).position);
 float z = zBufferS(t.x, t.y);
 float dist = fabs (z-t.z);
 if(dist < d_threshold && dist < normalmap(i).dist)
 {
 normalmap(i).color = cBufferS(t.x, t.y);
 normalmap(i).dist = dist;
 }
 }
 }
 normalmap.reconvertColorToNormal();
 return normalmap;
}

Sampling the simplified model. We scan-convert each face of the simplified
model in software. The triangular sample point sets are packed into a
rectangular sample array. We use a simple sampling and packing method. Each
face of the simplified mesh is sampled into a right-angled triangle patch of
equal resolution, two triangle patches that share one edge in the model form a
square, and each of the remaining triangle patches occupies a square. These
squares are packed together and form the rectangular normal map array. The

actual number of these squares and the user-specified size of the normal map
determines the number of samples per square and therefore per simplified
triangle. Other more complex sampling and packing approaches can be found in
[5] [8]. The interpolation within the normal map may result in discontinuous
edges, since adjacent sample patches in the packed normal map may be non-
adjacent on the simplified mesh. This problem can be avoided with a similar
approach chosen in [5] for an anti-aliasing method. We simply extend each face
and save a slightly wider sampling patch (one or two pixels wider in the
discrete normal map space) to solve the problem.

Sampling viewpoints. For each sampling point on the simplified model, its
corresponding point and normal vector on the original model need to be
computed. Similar to [5], we define the corresponding point on the original
mesh as the one whose distance from the sample point is the shortest. The
computation of exact point correspondences based on a distance metric is
complicated and time-consuming [5], so we resort to a viewpoint sampling
method. For simplicity, we uniformly sample viewpoints around the object. A
set of optimal view point positions can be determined by using Stuerzlinger’s
[14] hierarchical visibility algorithm.
For each specified camera position, we implement the following four steps:
1. Render the original model onto the screen with vertex colors corresponding

to its vertex (or face) normal vectors;
2.Transform each sampling point from the simplified model into current screen

coordinates with the same viewing parameters;
3.For each sampling point, replace the corresponding point on the original

model (therefore color values) if the distance is smaller than the currently
stored distance. For measuring the distance, we just use the difference
between the z-values of the sampling point and a point on the original model
which maps to the same pixel on the screen.

4.Finally, we reconvert the color vectors to normal vectors, which gives us the
normal map.

For the above procedure, we have chosen to use a fixed set of viewpoints, and
require they are uniformly distributed around the model. For our models, we
typically used 12 positions, as shown in Figure 4a, which has shown to be
adequate in most cases - even for the less uniformly shaped objects. In general,
the final normal vectors of the normal maps have smooth transitions between
two different viewpoints, since the images from neighboring viewpoints
typically overlap.

Improving normal vector precision. The above method usually creates
normal maps with 8-bit precision for each component because color buffers
typically have three 8-bit color components. There are two kinds of errors, one
comes from quantizing the vertex normal to an 8-bit color component. The
other is a result of the 8-bit color interpolation. For avoiding these quantization
errors as far as possible, we could use an item buffer. Instead of directly
rendering the normals of the high resolution model, we render triangle IDs as
colors in a first pass. The corresponding point on the original mesh therefore
the corresponding normal can be found by the triangle ID and the pixel
coordinates and depth of the triangle for a given sample point. The quantization
of the normal happens then just before it is entered into the normal map, which
could be 8 or 16 bit in our case.

Filling invisible parts in normal map. A fixed set of viewpoints is adequate
for a wide variety of models. However, for models with very complex visibility
there might be some invisible samples. Often such parts are not important since
they are difficult to see if the object is just observed from the outside. However,
these undefined samples may result in apparent visible artifacts. In order to
avoid undefined areas in the normal map, we initialize the normal map by
interpolating the vertex normals of the simplified model. We also provide a
distance threshold, and only update the elements in the normal map if the
corresponding distance is less than the given threshold. As a consequence, the
samples corresponding to invisible parts will keep their initial values, which are
the interpolated normal vectors of the simplified model. Thus we avoid visible
artifacts in these regions and use at least Phong’s normal interpolation method.

Figure 1: Comparison of the methods without and with normal initialization. Both
image are synthesized by rendering a simplified model (buddha) with normal map
textures. The left image corresponds to the method without normal initialization, while
the right side corresponds to the method with normal initialization. The white rectangle

contains some invisible parts for the fixed set of viewpoints, which are below the robe of
the statue.

Another basic alternative for avoiding invisible parts in the normal map is to
interactively update the normal map by rotating the model in track ball mode.
In this way, new views assigned by the user are added to the fixed set of views
to improve the normal map.

3. Real-time rendering of normal mapped meshes

Single pass real-time rendering of normal-mapped meshes is possible with
today’s graphics hardware. We use an Nvidia GeForce3 card, which supports
vertex programs, texture shaders, and register combiners. Our implementation
is pretty similar to a standard real-time bump mapping implementation using
Nvidia’s extensions[10], except that we compute the lighting in the local face
space instead of the texture space[15].

 Our experiments showed that an internal precision of 8 bits introduced
visual artifacts in high light areas, such as blocky appearance and mach
banding. We had to resort to 16 bit precision, which is supported by a texture
map type, called GL_SIGNED_HILO_NV. Each element in a
GL_SIGNED_HILO_NV texture map consists of two 16-bit signed
components HI and LO. HI and LO are mapped to a [-1, 1] range. Such a 2D
vector corresponds to a 3D vector (HI, LO, sqrt(1-HI2 –LO2)). For this type of
texture map, the internal calculations such as dot products are performed with
16 bits precision. Figure 2 compares the results for using these different texture
types. We found that the external precision of a normal map is not very
important. Normal maps with 8-bit or 16-bit precision lead to very similar
visual results if the internal type is set to 16-bit precision computation. In order
to use 16-bit internal computations, normal maps have to use
GL_SIGNED_HILO_NV texture maps. The normal maps need to be
transformed into a space where the z-value of each normal should be not less
than zero. Our normal maps are packed with discontinuous square patches,
which makes it in most cases impossible to construct a single consistent texture
space for all triangles represented in the normal map. Instead, we transform all
normal vectors within a triangle patch of the normal map into a local face
space, whose z-axis is the same direction as normal vector of the triangle. The
x-axis is one edge of the triangle and the y-axis is simply the cross product of
x-axis and z-axis. As the result, the Z-value of the normal vectors in the triangle
patch is usually greater than zero, so we can use GL_SIGNED_HILO_NV
normal maps and 16 bit computation for our lighting calculations.

 (a) (b) (c)
Figure 2: Results for different internal and external normal map precisions. (a) The
external normal map type is GL_SIGNED_BYTE, the internal format is
GL_SIGNED_HILO_NV. (b) The external normal map type is GL_RGB8, the internal
format is the same. (c) The external normal map type is GL_SHORT, the internal format
is GL_SIGNED_HILO_NV.

4. Example and timing results

We adopted Garland’s simplification method [1] to decimate our models.
Our normal map construction and rendering algorithms are implemented under
Linux on a 1.3GHz AMD PC with 768M of RAM and 64MB Geforce3
Graphics.

Model

number of faces
(simplified model)

Construction
Time (seconds)

Number of
samples

500 7.39 900,000
1001 7.26 882,882
1860 7.75 952,320
2306 7.51 903,952
3109 7.51 895,392

Bunny
(original model
has 69,451 faces)

7200 7.7 921,600
2446 12.23 890,344
3161 12.07 910,368
4072 12.18 895,840

Buddha
(original model
has 1,085,634
faces) 6000 12.03 864,000

Table 1: Normal map construction timings for two models. The normal map size is set
to 1024x1024. Then normal map construction time depends on the number of points
sampled on the simplified model and not very much on the size of the original model.

Table 1 shows our construction method as outlined in section 2. It is interesting
to notice that the complexity of the original model does not influence the

processing time heavily. We found that the rendering time heavily depends on
the number of sample points, which need to be transformed by the CPU or
through a feedback mechanism of the graphics hardware, which is typically not
highly optimized.

An example of a normal-map rendering for a model with simplified
topology is shown in Figure 6. Gaps and creases between finger bones
disappear in the simplified model. However, these gaps can be seen again from
the normal mapped model. In this case, the normals on the original model are
well preserved on the simplified model with different topology. This example
demonstrates that our method works well even for complex cases.

Figure 7 shows the rendering of a normal-mapped model on a Geforce3
system. There is an overhead involved compared to conventional Gouraud
shaded rendering, but this overhead is usually quite small. For larger simplified
models e.g. with 10000 or 20000 triangles, we found that one can become quite
quickly geometry limited. This is due to the fact that the length of the vertex
programs has basically a linear influence on the processing time per vertex. Our
vertex program is XXX instructions long. For high resolution renderings – such
as 1600x1200 – we are usually fill limited. The per-pixel shading computations
have here a strong influence.

5. Error analysis

In order to evaluate the similarity between the original meshes and the
normal mapped simplified meshes, we render images from a set of view points
around the model. For our evaluation, we used 30 view points distributed
uniformly around the model. For each view, we acquire two images with depth
values. The first image is obtained by rendering the original model with vertex
colors corresponding to the vertex normals. The second image is obtained by
rendering the simplified model with the normal map as a color texture. The
depth values allow us to compute distance errors. Normal errors can be
obtained from corresponding color values. There are quantization errors
involved, since the normal vectors are quantized to 8 bits.

To evaluate the errors versus the number of views, we performed the
following experiment. We start with the normal map which is initialized with
normal vectors obtained by interpolating the vertex normals of the simplified
mesh. The normal map is updated by adding new views one by one. After each
update, we compute the normal and distance errors for the current normal-
mapped mesh. The result of the experiment is shown in figure 3(a). It can be
seen from the figure that the normal errors cannot be reduced much after 12
views for our models. Another observation is that the normal errors cannot drop
far below 5 or 10 for bunny or budda model because of geometrical error.

 (a) (b) (c)
Figure 3: (a) Normal errors versus the number of views (quantized to 8 bit, average
vector difference). The normal map resolution is 1024×1024. (b) Distance error versus
the face number of simplified models.(normalized screen coordinates) (c) Normal errors
versus the face number of the simplified mesh and the size of the normal map (bunny
model).

Note that the normal and position errors of normal mapped meshes reduce
slowly with increasing face numbers. Besides the number of faces, the size of
the normal map also influences the visual quality of the normal mapped mesh.
With larger normal map sizes, more normal samples are obtained, which results
in less normal errors. Figure 3c shows such case. It is very interesting to notice
that it does not make much sense to use very large normal maps for simplified
models with a small number of faces, since the geometric error dominates. This
basic evaluation gives an idea, how the different parameters affect the quality
of the model. However, much more evaluation needs to be performed for a
larger variety of models to get more generally applicable conclusions.

In the above, we evaluate the error by averaging all the errors for the entire
model. It may be more interesting to see the local errors for each part of the
model. To visualize these errors, we render two images for a fixed view as
before. One is obtained by rendering the original model with vertex colors
corresponding to the vertex normals. The other is obtained by rendering the
simplified model with the normal map as a color texture. The difference
between the two images is the error for this view. Figure 4b shows the error
with the appropriate colors. It is clear the biggest differences appear in detailed
parts.

6. Discussion

Sander et al[6] mention that the parameterization based on geometrically
closest points used in Cignoni et al[5] leads to discontinuities. One may expect
that our method will lead to even more discontinuities. However, we found that
the discontinuities are not very obvious with our method, because we use a
small number of views. It is clear that there are no discontinuities in areas,
which are visible from only one view. Adding further view results in smooth
normal transitions in regions seen from multiple views. We extended our
method to compute corresponding points by minimizing the angles between
interpolated normal vectors and the viewing direction. We found that the
quality of the normal map improved only slightly, but the constructions process
became much slower. These tradeoffs need further study.

Normal vector aliasing is an issue that needs further investigation.
Currently, we use only very basic methods to sample the models. Mip-mapping
is a well-known technique for anti-aliasing textures. For meshes that can be
represented as z=f(x,y), different mip map levels can be easily generated to
avoid normal vector aliasing. However, it is more difficult to extend the idea to
the general case. The content of a packed normal maps is not continuous along
the triangle boundaries, which means that mip-map levels need to be generated
by hand by appropriately down sampling the normal information. In addition,
our method is limited by the screen resolution at the moment. If the resolution
of the original model becomes much larger than the screen resolution, our
approach will need to be extended to handle chunks of the model such that the
screen resolution is larger than the number of triangles in each chunk.
Otherwise, our method down samples the original model by point sampling the
normals, which could result in undersampling in this case and therefore aliasing
artifacts.

Due to hardware limitations and our single pass rendering, our normal
map rendering implementation supports the illumination of textured objects by
only a single light source. Support for multiple light sources requires a multi-
pass rendering approach on current graphics hardware.

Our current implementation uses a set of uniformly distributed view
points around the model. Stuerzlinger’s [14] hierarchical visibility algorithm
should be useful to determine a set optimal view positions, which would fully
automate our approach and result in even higher quality normal maps.

ACKNOWLEDGEMENTS
We thank the VRGeo consortium for support and discussions in the context of
this work. We also thank the anonymous reviewers who provided excellent
feedback on the first version of this paper and helped to improve the
presentation a lot. The research is also supported by National Science

Foundation of China (No. 60021201). The bunny, dragon and happybudda
models are provided by Stanford Computer Graphics Laboratory.

REFERENCES
 [1] M.Garland and P.S. Heckbert, Surface simplification algorithm using

quadric error metrics. Computer Graphics (SIGGRAPH’96 Proceedings),
pages 209-216, 1996.

[2] Hugues Hoppe. New Quadric Metric for Simplifying Meshes with
Appearance Attributes. IEEE Visulization'99 proceedings.

[3] P. Lindstrom and G. Turk, Image-Driven Simplification, ACM Transactions
on Graphics, Vol.19, No.3, July 2000, pp204-241.

[4] Marc Soucy, Guy Godin, and Marc Rioux. A texture-mapping approach for
the compression of colored 3D triangulations. In Visual Computer, 12:503-
514, 1996.

[5] P. Cignoni, C. Montani, R. Scopigno, A general method for preserving
attribute values on simplified meshes. In Visualization’98 proceedings,
IEEE, pp.59-66.

[6] P. V. Sander, X. Gu, S. J. Gortler, H. Hoppe, J. Snyder, Silhouette Clipping,
SIGGRAPH’2000, pp327-334.

[7] J. Cohen, M. Olano and D. Manocha, Appearance-preserving
simplification. SIGGRAPH’98, pp 115-122.

[8] P. V. Sander, J. Snyder, S. J. Gortler, H. Hoppe, Texture mapping
progressive meshes. SIGGRAPH’2001, pp409-416.

[9] U. Labsik, R. Sturm and G. Greiner, Depth Buffer Based Registration of
Free-form Surfaces, VMV 2000 proceedings, 2000.

[10] Chris Wynn, Implementing Bump-Mapping using Register
Combiners.Documentation in NVSDK from Nvidia Corporation.

[11] E. Puppo and R. Scopigno. Simplification, LOD, and Multiresolution –
Principles and applications. In EUROGRAPHICS’97 Tutorial Notes.
Eurographics Association, Aire-la-Ville (CH), 1997.

[12] Heckbert, P., and Garland, M. Survey of polygonal surface simplification
algorithms. In Multiresolution surface modeling (SIGGRAPH’97 Course
notes #25). ACM SIGGRAPH 1997.

[13] Garland, M. and Heckbert, P. S. Simplifying surface with color and texture
using quadric error metrics. IEEE Visualization’98, pp263-269.

[14] Stuerzlinger, W. Imagine all Visible Surfaces. In Proceedings of Graphics
Interface’ 99, pp. 115-122, 1999.

[15] D.Sim Dietrich Jr. Texture Space on Real Models, Documentation in
NVSDK from Nvidia Corporation.

 (a) (b)

Figure 4: (a) The 12 different views of an object used during normal map creation for
the bunny model. . The object is rendered with colors representing the vertex normal
vectors (b) The normal errors for the bunny model corresponding to a given view.

(a) Original Model (b) Normal map (c) T=1000 (d) T=1000.
 T= 496,724. t= 90.2ms. t=1.60 ms t = 2.5ms

Figure 5: Normal maps for a height field mesh can be generated from a single view
point. T is the number of triangles of the model, t is the drawing time per frame. (b)
Normal maps are shown as colors. (c)Result of rendering the simplified model using
Gouraud shading on a PC with a Geforce 3 graphics card. (d) Result of rendering the
simplified model with a normal map on the same PC as (c).

 (a) (b) (c)

Figure 6: Normal maps for a model with simplified topology. (a) Original Model
(b) Model with simplified topology (c) Simplified model with normal map.

T=69,451. t = 14.71ms T=1000. t = 1.77ms T=1000. t = 3.53 ms

T=1,085,634. t= 233.14 ms T=3633. t = 2.1 ms T=3633. t= 4.05 ms

T=871,306 t= 169.24ms T=2997. t=1.9ms T=2997. t=3.8ms

 Original model Simplified model normal mapped simplified model

Figure 7: Comparison of rendering the original model, a simplified model
without normal map, and a simplified model with normal map.

	Abstract

