
Level of Detail Based Occlusion Culling for Dynamic Scenes

Anselm Grundhöfer
Bauhaus University Weimar

Weimar, Germany
anselm.grundhoefer@
medien.uni-weimar.de

Benjamin Brombach
Bauhaus University Weimar

Weimar, Germany
benjamin.brombach@
medien.uni-weimar.de

Robert Scheibe
Bauhaus University Weimar

Weimar, Germany
robert.scheibe@medien.uni-

weimar.de

Bernd Fröhlich
Bauhaus University Weimar

Weimar, Germany
bernd.froehlich@medien.uni-

weimar.de

Abstract
This paper presents a non-conservative occlusion culling
technique for dynamic scenes with animated or user-
manipulated objects. We use a multi-pass algorithm, which
decides the visibility based on low level of detail represen-
tations of the geometric models. Our approach makes effi-
cient use of hardware support for occlusion queries and
avoids stalling the graphics pipeline. We have tested our
approach for large real-world models from different areas.
Our results show that the algorithm performs well for me-
dium complex scenes with 5 to 20 million triangles. with a
very low number of hardly noticeable pixel errors, typically
in the range of 0.02 percent of the total number of visible
pixels.

Keywords
CR Categories and Subject Descriptors: I.3.3 [Pic-
ture/Image Generation]: Viewing Algorithms, Occlusion
Culling; I.3.5 [Computational Geometry and Object Model-
ling]: Object Hierarchies; I.3.7 [Three-Dimensional Graph-
ics and Realism]: Hidden Line/Surface Removal
Additional Keywords: Visibility and occlusion culling,
large-scale data visualization
.

1. INTRODUCTION

Occlusion culling is an important acceleration technique for
scenes with medium to high depth complexity. It may sig-
nificantly improve the rendering performance for geome-
try- or fill-limited scenes. In particular the second case has
become increasingly important due to the widespread use
of complex pixel-based shading techniques. Most occlusion
culling techniques were developed for static scenes and do
not work well for dynamic environments. In addition, the
combination of level of detail techniques and occlusion
culling has not been explored much.
We present a non-conservative multi-pass approach, which
uses low level of detail representations of the geometric
models to decide the visibility for the higher resolution
versions. Our approach computes the visibility on a per
object basis using the hardware occlusion flags available
with most recent graphics cards. In a pre-process large ob-
jects or objects with large bounding volumes are sliced into
smaller sub-objects to provide a reasonable granularity for
the occlusion decision. During run time, there are no addi-
tional data structures needed, except those for handling the
level of detail rendering.

Figure 1: The algorithm allows manipulations of arbi-
trary objects in the scene without losing the occlusion
culling ability. In the upper images you can see how the
marked roof is translated by the user. The lower image
shows that interior parts of the car are missing, since
they would be occluded by the roof (not displayed).
(Note: The original model does not have a second front
seat!)

Our approach was developed for rendering medium to large
geometric models in the range of tens of millions of trian-
gles, such as the ones appearing in the automotive industry
(Figure 1). In such application domains, users need to be
able to look at the car from the inside and outside, open and
close doors, or assemble an engine. These models are often
organized in a scene graph structure and use level of detail
representations to achieve reasonable frame rates. Our ap-
proach integrates well into such environments, since it does
not require much infrastructure.
The main contribution of this paper is the development of
an occlusion culling technique for dynamic scenes, which
is based on level of detail representations of geometric
models. Our approach makes efficient use of hardware
support for occlusion queries and avoids stalling the graph-
ics pipeline. We have tested our implementation for real-
world models in the range of 5 to 20 million polygons and
show that it performs better than alternative techniques.
Our approach is non-conservative, but for our test scenes
the fraction of incorrect pixels is typically around 0.02 per-
cent, which is hardly noticeable for interactive applications.

2. RELATED WORK

We provide a short overview of occlusion culling ap-
proaches relevant to our work and the generation of occlu-
sion preserving level of detail representations.

2.1. Occlusion culling and visibility culling
In the ideal case, only visible objects should be sent down
the graphics pipeline to minimize the required bandwidth,
the number of vertex operations, and the fill rate require-
ments. Generally, invisible objects can be classified into
three categories:

1. Objects outside the viewing frustum.
2. Objects which are projected to an area less than

one pixel in image space.
3. Objects occluded by other objects.

Removing occluded objects is the most challenging task. It
requires knowledge about the occlusion relationships of
objects in the scene and needs to identify the potentially
visible set (PVS) of objects in the scene.
A lot of research has been done in this field, leading to
many different occlusion culling approaches. [Cohen-Or et
al. 2003; Hey and Purgathofer 2001; Bittner and Wonka
2003] provide an overview and a detailed discussion of
these methods.
Occlusion culling algorithms can be classified into different
categories: off-line and on-line, image and object space,
and conservative or non-conservative. Another classifica-
tion decides if the visibility is computed from a certain
point or for a region. While off-line approaches need com-
plex data structures to keep information about the occlusion
relationships in the scene, on-line approaches need some
additional computation to determine occlusion relationships
for each frame. Object space algorithms calculate in most
cases the PVS of all objects using spatial bounding volume
hierarchies. Many algorithms are developed for region
based visibility calculations, which estimates a very con-
servative PVS [Durand et al. 2000].
A lot of work has been done for pre-processed visibility
calculations as well as for on the fly occlusion culling.
Some algorithms, which use pre-processing, subdivide the
static scene into grid elements and calculate the PVS for
every grid cell [Saona-Vázquez et al. 1999; Wang et al.
1998]. During rendering only the objects in the current
PVS have to be rendered, so no additional per-frame over-
head is needed.
On the fly occlusion culling methods have the advantage
that the PVS can be estimated for the current viewpoint
[El-Sana et al. 01; Greene et al. 1993; Plate et al. 2004;
Zhang et al. 97]. Some approaches have the ability to han-
dle dynamic scenes, but an overhead is incurred due to the
additional calculations for each frame. Some algorithms
also employ a hybrid approach using pre-processed data
structures and per frame occlusion culling [Hillesland et al.
2002; Bittner et al. 2004].

A lot of algorithms which use the hardware acceleration of
modern graphic cards have been developed. While earlier
algorithms use the depth and stencil buffer, nowadays
graphic cards offer a hardware accelerated occlusion query.
This feature allows us to render objects and to query if the
object is visible. The original HP_occlusion_test,
was able to send one occlusion query and the result had to
be retrieved immediately. The latest extension is able to
send many queries before retrieving the results, which
avoids stalling the graphics pipeline. In addition the query
returns the number of visible pixels in the view port instead
of just a Boolean value. This extension was introduced by
NVIDIA, called NV_occlusion_query and is now an
official OpenGL ARB extension.

2.2. Occlusion preserving level of detail
Many occlusion culling approaches use simplified versions
of the original geometry for calculating occlusions. A
decimated model must lie "inside" the original model to
guarantee correct and conservative occlusion.
[Law and Tan 1999] use virtual occluders, which are sim-
plified versions of the original model. Their edge correc-
tion moves all the vertices and edges of the reduced model
inside the boundary of the original model. With their ap-
proach it is possible to generate highly decimated occlusion
preserving models because the virtual occluders never oc-
clude other objects than the original model would. Thus the
virtual models may be geometrically very different from
the original but the decimated models are only used for
visibility testing. For the final rendering different level of
details are used. This approach works well for solid mod-
els, but CAD models are often sets of surface patches.
[Germs and Jansen 2001] present an algorithm for generat-
ing simplified facades from complex models for urban
walkthrough applications. Their approach is based on the
observation that buildings are often 2.5D structure. Most
buildings can be described by a 2D contour, called foot-
print, and an associated height. A building itself consists of
stacked blocks. The goal of this approach is to find parts of
the building that have the same height and encapsulate
them into one block. Every block has its own footprint and
height. While going along the z-axis (vertical), different
heights can be found. This is called z-level identification.
For every z-level a footprint is created. With the set of
footprints and height levels the facade of the high detailed
building is generated. The facade is completely inside the
original model and thus the technique is conservative.
We have not worked on building good and correct occlud-
ers for our occlusion culling approach, since it is a wide
field of research and was not the focus of this paper. We
use an existing edge collapse algorithm, similar to [Hoppe
et al. 1993], to generate the levels of detail for our models.
However, our approach would directly benefit from occlu-
sion preserving level of detail representations.

3. ALGORITHM

Our approach combines LOD-based rendering with an effi-
cient multi-pass occlusion culling algorithm. The LODs are
generated in an off-line pre-processing step as well as the
slicing of the high polygon count objects. The actual ren-
dering is done by a three pass algorithm which efficiently
identifies occluded objects during the first two passes. The
third pass renders the potentially visible set.

3.1. Pre-processing
Similar to standard LOD-based rendering systems we need
to create level of detail representations of our objects. Low
level of detail representations are used to determine the
occlusion relationships in the scene. For the final rendering
pass more detailed representations are selected based on a
given target frame rate. The decimation approach affects
the quality of our algorithm directly, since simplified mod-
els should keep the occlusion relationship as much as pos-
sible.
Our occlusion culling approach determines visibility on a
per object basis. If the scene consists only of a small num-
ber of large objects, our algorithm would not perform well.
In general for scenes with very large objects we apply a
geometry splitting step, which divides the model into parts
of approximately equal size. This object split has to be ap-
plied to each level of detail of a model. This step improves
the granularity of our occlusion culling approach signifi-
cantly. It also adds a small number of vertices, but the im-
proved culling efficiency outweighs this overhead in gen-
eral.

3.2. Multi-pass rendering
Our algorithm consist of three rendering passes, Listing 1
provides an overview in pseudo code notation. An initial
view frustum culling pass removes all objects outside the
viewing frustum. This can be done in software or hardware
or skipped if it is efficiently implemented on the graphics
card. The LOD pre-processing step computes the required
LODs for each object. The LODs for the first two render-
ing passes are lower than the ones used for the final render-
ing pass if the target frame rate is appropriately selected.
All three passes make use of the split object representations
computed in the pre-processing step to achieve a good
granularity for the occlusion culling approach.
The next passes make use of the OpenGL occlusion culling
extension which counts the number of visible pixels of
geometric primitives. Occlusion query objects have to be
generated and activated for each geometric object. After
the geometry is drawn, the occlusion query has to be dis-
abled and the number of visible pixels can be queried.
Since this query requires that the object has been rasterized,
it is useful to send multiple queries before asking for the
results.
In the first rendering pass the depth buffer is cleared and
the objects are rendered with low levels of detail into the z-
buffer with activated depth testing. During this pass, colour
buffer writes and rendering features like lighting, shading,

// view frustum culling
do view frustum culling and label all objects lying
in view frustum
(all further passes treat only these marked objects)

// LOD pre-processing:
calculate distances of each object to camera
determine LODs for final rendering and occlusion
culling
store both LODs for each object

// 1st pass:
Disable colour mask, texturing, lighting and frag-
ment/vertex programs;
clear z-buffer;
for each object
 render occlusion culling LOD into depth buffer;

// 2nd pass:
disable Depth Mask;
set glDepthFunc to GL_LEQUAL
for each object
 begin occlusion query;
 render occlusion culling LOD
 end occlusion query;

// 3rd pass:
enable colour mask, texturing, lighting and frag-
ment/vertex programs;
enable depth mask;
clear depth and colour buffer
for each object
 get occlusion query result
 if(number of visible pixels > threshold)
 render in final rendering LOD

Listing 1. LOD-based multi-pass occlusion culling.

Texturing, and vertex/fragment shaders are disabled. After
this pass the depth buffer contains the depth information
for the whole scene.
In the second pass all the objects are drawn again but now
depth buffer writes are disabled as well. The depth testing
function has to be set to GL_LEQUAL (instead of the de-
fault GL_LESS state) to count only the pixels of visible
objects. With each object now an occlusion query is send.
Only finally visible pixels are counted, since the z-buffer of
the first pass is used.
In the last pass colour and depth buffer writes are enabled
and the depth function is turned back to its default state.
Other states like texturing and lighting or vertex and frag-
ment shaders can be enabled if needed.
Before rendering an object with a higher LOD, which is
selected based on a distance calculation, we retrieve the
result of the corresponding occlusion query. If the query
result is zero, no pixels of this object were visible during
the second rendering pass and the object can be skipped in
any case. Instead of skipping only objects with zero visible
pixels, we use a threshold value typically in the range of
zero to 100 pixels. The threshold affects the “conserva-
tism” of our approach.
Translucent objects cannot be treated in the described way
because they do not occlude the objects lying behind them.
Therefore these objects have to be excluded from the first
(depth buffer filling) pass. While they are not able to oc-
clude other objects they still can be occluded by opaque

objects. This means we can still include them in the second
pass. For correct alpha blending, the translucent objects
are rendered after the opaque objects in back to front order.

3.3. Alternative approaches
For comparisons, we implemented two more algorithms.
The first algorithm (Listing 2) is very similar to the one
described in [Fernando and Pharr 2005], but it makes use
of our low LODs to support more efficient culling. This
approach is highly non-conservative, since it uses the oc-
clusions from frame n-1 to determine the visibility for
frame n. We refer to this approach as “multi-frame occlu-
sion culling. For the very first frame all objects are labelled
as visible and they are drawn with high resolution LODs.
Then all objects’ bounding boxes are drawn into the depth
buffer and occlusion queries are sent for each object. The
results are queried during the next frame and only the visi-
ble objects are rendered using the correct LOD. Afterwards
all the other objects are rendered only into the depth buffer
with low LODs. Now the depth buffer is filled with the z-
values from all objects - some objects in high resolution,
some in low resolution. Then the bounding boxes of all
objects including occlusion queries are rendered, which is
very similar to the second pass of our algorithm. In this
case we cannot use the “occlusion culling” LOD because of
the fact that the depth buffer contains some objects ren-
dered with high LODs, so we cannot guarantee the visibil-
ity of the decimated objects. Please note that the results of
the occlusion queries for the bounding boxes are only
evaluated during the next frame which explains the
speedup compared to our algorithm.

// LOD pre-processing:
calculate distances of each marked object to camera
determine LODs for final rendering and occlusion
culling
store both LODs for each object

// 1st pass:
enable colour mask, texturing, lighting and frag-
ment/vertex programs;
enable Depth Mask;
clear depth and colour buffer
for each object
 get occlusion query result from last frame
 if(number of visible pixels > threshold)
 render in final rendering LOD
 else
 label object as not rendered

// 2nd pass:
disable colour mask, texturing, lighting and frag-
ment/vertex programs;
for each labeled object (which was not rendered in
the first pass)
 render occlusion culling LOD in depth buffer;

// 3rd pass:
disable depth mask;
for each object
 begin occlusion query;
 render bounding box into depth buffer;
 end occlusion query;

Listing 2. Multi-frame occlusion culling.

We also implemented a simple “stop and wait” algorithm,
which renders the scene in front to back order. For each
object – except for the front most object – a bounding box

is drawn with an occlusion query. The result is fetched im-
mediately afterwards and if the box was visible the corre-
sponding object is drawn. See Listing 3 for the pseudo code
of the algorithm. This algorithm needs almost no overhead
(only the bounding boxes) and generates conservative re-
sults, but due to the GPU stalling with each occlusion
query the performance increase can be quite limited. We
did not implement a hierarchical version, since it is difficult
to deal efficiently with dynamic scenarios.

// LOD pre-processing:
calculate distances of each object to camera
determine LODs for final rendering
store LOD for each object
sort all objects in front to back order

// rendering:
clear depth and colour buffer
draw the nearest object in final rendering LOD

for all other objects:
 disable colour/depth mask, texturing, lighting and
 fragment/vertex programs;
 begin occlusion query;
 render bounding box into depth buffer;
 end occlusion query;

 get occlusion query result
 if(number of visible pixels > threshold)
 enable Colour/Depth Mask, Texturing, lighting
 and fragment/vertex programs;
 render for the final rendering LOD

Listing 3. Simple stop-and-wait occlusion culling.

4. RESULTS

We have evaluated the three different occlusion culling
implementations for three different scenarios.

4.1. Scenarios
Our first scene consists of a large number of Utah Teapots
(see Figure 9). The second scene consists of four Volks-
wagen Beetle models, which serve as our real world exam-
ple (Figure 1, 2 and 3). The third test object was the power
plant model from the University of North Carolina. The
models were decimated into three levels of detail in addi-
tion to the full resolution model. The two lowest LODs
were used for occlusion culling, whereas the three highest
LODs were used for the third rendering pass. The Beetle
and the power plant model were split into tiles to improve
the occlusion culling granularity. See table 1 for the de-
tailed information about the scene complexity.

Table 1. Scenarios overview

 Teapots Powerplant Beetle

Triangles per
LOD

1. 11.848.815
2. 1.213.440
3. 568.800
4. 310.470

1. 8.133.064
2. 2.273.369
3. 1.437.965
4. 958.695

1. 3.403.818
2. 1.283.723
3. 454.654
4. 190.985

of objects 1.185 854 337

4.2. Object splitting
We split objects with large bounding boxes and objects
with a large number of triangles into smaller parts to pro-
vide a reasonable granularity for our approach. Large ob-
jects are split such that each tile’s edge length is shorter
than 10 percent of the corresponding edge of the scene
bounding box. Objects with more than 300.000 vertices are
split even if they are smaller in size than the 10 percent of
the scene bounding box. There is only a single split step,
which subdivides the objects’ bounding boxes along all
dimensions resulting in approximately cube shaped parts.
These parameters were empirically chosen and worked well
for our scenarios.

4.3. Pixel error measurement
For the comparison of the different rendering algorithms
we created key frame animations for our test scenes and
measured the frame rates with and without occlusion cull-
ing. For determining the pixel error rate of our algorithm,
each frame is rendered twice – with and without occlusion
culling. These two frames are copied into textures and they
are compared by a fragment program to count the errors
efficiently. Each object is tagged by a unique colour (see
Figure 2) and the rendering is done without lighting or
shading to guarantee an accurate comparison of the pixel
colour values.
A full screen quad with texture coordinates is rendered for
including all the pixels into the comparison. The fragment
shader does a texture lookup into both textures which con-
tain the two previously generated images. It discards all
fragments which are equal in both textures and keeps only
those with different colours. Using the occlusion culling
extension we can efficiently count all the rendered pixels
which is equivalent to the pixel error rate of our algorithm.

Figure 2: Object colour ID rendering. All objects are la-
beled by different colours. This mode was chosen to iden-
tify the pixel errors of our algorithm.

4.4. Low level of detail representations
The use of low level of detail representations for the occlu-
sion tests is only an approximation of the actual visibility
of the high resolution objects. We have measured the num-
ber of actually rendered faces using our approach compared

to the number of faces if the highest resolution LODs
would be used for the occlusion test. We did not measure
the actual number of visible triangles, just the number of
triangles drawn. The results indicate that the low resolution
version tend to a conservative behaviour since the number
of drawn triangles for the final pass is always larger than
the number required if the high resolution LODs would be
used for the occlusion test. These results are heavily de-
pendent on the quality of the LODs, the pixel threshold as
well as the granularity of the (split) objects in the scene.
However, the results suggest that the use of low level rep-
resentations for the occlusion tests, which are generated by
a standard decimation algorithm, behave good-natured.

35 33 23 41
32 28 22 38

Figure 3: The upper line shows the percentage of faces
drawn for the final pass for four different views using low
resolution LODs for the occlusion test. The lower line
shows the percentage of drawn faces using only the
highest LOD for the occlusion test.

4.6. Fixed frame rate rendering
We have also experimented with constant frame rate ren-
dering by selecting the LODs for all the objects such that a
given number of triangles was not exceeded. This resulted
in constant frame rates for geometry limited scenes. If pixel
fill during the third rendering pass is the limitation, our
algorithm will perform as fast as the hardware allows, but it
cannot be adjusted to a certain frame rate.
When comparing our algorithm to a standard LOD algo-
rithm without occlusion culling, we can see that it renders
with slightly lower frame rates but with much increased
rendering quality (see Figure 4).

Figure 4: Fixed frame rate scene quality comparison.
Different LODs are coloured from green (high res), blue,
red to yellow (lowest LOD). The overall scene quality
increases if we use our multi-pass algorithm (right)
compared to standard fixed frame-rate rendering (left).

4.5. Implementation
Our implementation uses a QT/C++ framework for the in-
terface and the data structure implementation. The render-
ing API is OpenGL. The software runs under Linux and
Microsoft Windows operating systems. All tests were done
under Fedora Core 3 Linux on an Intel dual Xeon 3.2 GHz

workstation with 4 GBs of RAM and a NVIDIA Quadro
FX 3400 graphics card with driver version 76.67.
Our algorithm was compared to standard LOD based ren-
dering without occlusion culling (No OC), but also to the
multi-frame approach and the stop-and-wait implementa-
tion. In addition, we compare two versions for each sce-
nario – simple colour-per-vertex rendering (geometry lim-
ited) and high quality per-pixel shading (fill-limited). Fig-
ures 5, 6 and 7 show a comparison of the averaged frames
rates of a fly through for our three models at 1024x768
resolution and for a pixel threshold of 30 pixels.
For most cases our algorithm performs notably faster than
the stop-and-wait implementation, while the multi-frame
approach outperforms our approach slightly for the colour
scenario. If fragment shaders are used, the multi-frame ap-
proach performs worse than our approach because of the
bounding boxes which are used for the occlusion test. If we
compare the generated pixel errors between our multi-pass
algorithm and the multi-frame algorithm (Figure 8 and 9)
we see many more pixel errors for the multi-frame algo-
rithm due to the one frame delay for the application of the
occlusion query results.

In general our algorithm renders more triangles than the
stop-and-wait approach, because of the triangles required
for rendering the first two passes. Nevertheless our ap-
proach performs better due to the overhead produced by
extensive GL-state switching and the GPU stalling with the
stop-and-wait implementation.

Figure 10 shows one frame of our animation. The left im-
age is generated with standard LOD rendering while the
right image is generated with our 3-pass algorithm and a
pixel threshold of 20 pixels. The black and white image
below shows the differences of the two images. The errors
are very small and mostly not noticeable.

Average frames per second for the teapot scene

0 10 20 30 40 50 60 70

stop&wait

Multi-frame

Multi-pass

No Oc

fps

Colors
Fragment shaded

Figure 5: Teapot scene: If only vertex colours are ren-
dered, the speedup is much smaller and the stop-and-
wait algorithm is even slower than rendering without
occlusion culling because of the GPU stalling and GL-
state switching problems. Our algorithm performs even
better than the multi-frame algorithm when using frag-
ment shaders for illumination due to the more precise
detection of culled objects.

Average frames per second for the beetle scene

0 20 40 60 80 100 120

stop&wait

Multi-frame

Multi-pass

No Oc

fps

Colors
Fragment shaded

Figure 6: Single Beetle scene: Since the Beetle model
has only around 4 million triangles, the stop and wait
algorithm performs almost as well as our algorithm be-
cause of the large number of triangles used for the two
initial passes.

Average frames per second for the powerplant scene

0 5 10 15 20 25 30 35 40

stop&wait

Multi-frame

Multi-pass

No Oc

fps

Colors
Fragment shaded

Figure 7: Power plant scene: The results are similar to
the teapot scene. The fragment shading is very basic.

Figure 8: Pixel error comparison for the teapot scene:
Both diagrams were produced using a threshold of 30
pixels. The upper diagram shows the pixel errors for
the multi-pass algorithm, which has an average error of
47 pixels. The lower one shows the multi-frame ap-
proach which leads to very high errors for fast chang-
ing scenes. Here the average error is 7043 pixels.

Multi-pass algorithm

1

10

100

1000

10000

100000

1000000

Multi-frame algorithm

1

10

100

1000

10000

100000

1000000

Figure 9: Pixel error comparison for the beetle scene:
The threshold is 30 pixels. The upper diagram shows
the pixel errors for our algorithm with an average error
of 14 pixels. The lower one shows the multi-frame ap-
proach with an average error of 403 pixels.

Figure 10: Pixel error visualization. The left upper frame
was rendered with a standard LOD algorithm using the
same LOD settings as for our multi-pass algorithm. The
upper right image was rendered by our algorithm using
a threshold of 20 pixels per occlusion query. The over-
all pixel errors in this frame are 148 (out of 906948)
which is 0.0163%. (See the red circles in the right im-
age). The incorrect pixels are displayed as black points
in the lower image. They appear in small clusters due to
the pixel threshold per object.

5. DISCUSSION

Our algorithm offers a lot of possibilities to choose pa-
rameters for the trade-off between frame rate and visual
quality. The most relevant factors are:

 Level of detail selection:
Different LODs are selected for the final render pass
and the occlusion culling passes. Choosing a lower
LOD for the final render pass reduces the complete
visual quality of the scene but allows adjusting an ade-
quate frame rate for complex scenes. Our approach
also makes use of LODs for occlusion culling. It is as-
sumed that high detailed LODs have a better occlusion
preserving characteristic. Low resolution models are
less occlusion preserving and may result in better per-
formance but also result in more pixel errors due to in-
correct occlusion query results.

 Distance calculation method for the LOD selection.

 Pixel threshold:
This value allows more objects to be culled, but in-
creases the number of incorrect pixels for the final im-
age. If the LODs are of very bad quality, the overall
pixel error can add up to a very high value due to the
fact that this threshold is applied for each object.

 Pre-render view port:
Choosing a smaller view port for the first two passes is
equivalent to increasing the pixel threshold quadrati-
cally, but it reduces the required fill rate for the first
render passes.

For high performance rendering, we generated triangle
strips for each object and stored the data in Vertex Buffer
Objects (VBO). With the current NVIDIA graphics driver
(76.67) we noticed that there was an enormous perform-
ance drop when the number of objects increased. It seemed
that the driver was not able to efficiently manage many
(>2000) VBOs with a small number of vertices. We real-
ized that although VBOs are able to generate a higher per-
formance than vertex arrays or display lists they are not yet
useful for our task. Furthermore, the system behaves unsta-
bly – we noticed random crashes. Because of these prob-
lems we switched to vertex arrays and display lists which
gave us a much higher overall performance without any
stability problems. To optimize the vertex transfer, two
different display lists were needed: one with normals and
texture coordinates for final rendering pass and one con-
taining only vertex data for occlusion culling. This in-
creased the memory requirements for the level of detail
representations which were used for all three rendering
passes, because the objects have to be stored in two display
lists. While this increases the overall memory requirements,
it significantly speeds up the pre-rendering process, be-
cause unnecessary data like texture coordinates and nor-
mals do not have to be transferred and transformed.
The performance was optimized by disabling all non-
necessary features like shading and texturing for the first
two passes. The fixed function pipeline of current NVIDIA

graphics hardware offers features like double speed z-only
rendering if colour buffer rendering is disabled and early z-
optimizations (z-cull).

6. CONCLUSIONS AND FUTURE WORK

We presented a new algorithm, which combines level of
detail rendering and occlusion culling in an efficient way.
Our approach works well for interactive scenes with dy-
namic objects and performs better than classical stop-and-
wait approaches. Our algorithm generates a significant
speedup compared to standard LOD-based rendering with-
out introducing significant quality tradeoffs. For applica-
tions which are already using different level-of-detail rep-
resentations such as CAD rendering systems or computer
games, major changes in the implementation are not re-
quired.
The generation of occlusion preserving and effective LODs
for non-solid models is a non-trivial problem due to the fact
there is no defined inside or outside for such models. How-
ever such representations could speed up the initial render-
ing passes significantly, since smaller models could be
used. In addition the scalability of our approach would be
improved and it would be turned into a conservative tech-
nique. Without occlusion preserving LODs, there is a need
for measures that predict potential occlusion errors.
The combination of our technique with occlusion culling
approaches for static scenes could work well for a large
class of applications, since most environments consist of a
static model and a limited number of freely moving objects.

ACKNOWLEDGMENTS

We thank Volkswagen AG for providing the Beetle model.

REFERENCES

BITTNER J. and WONKA P. 2003. Visibility in computer
graphics. In Journal of Environment and Planning B:
Planning and Design, volume 30, number 5, 729–756.

BITTNER J., WIMMER M., PIRINGER H. and PUR-
GATHOFER W. Coherent 2004. Hierarchical Culling:
Hardware Occlusion Queries made useful. Proceedings
of Eurographics 2004. Computer Graphics Forum,
615-624.

COHEN-OR D., CHRYSANTHOU Y., SILVA C. and
DURAND F. 2003. A survey of visibility for walk-
through applications. IEEE Transactions on Visualiza-
tion and Computer Graphics 9, 412-431.

DURAND F., DRETTAKIS G., THOLLOT J. and PUECH
C. 2000. Conservative Visibility Pre-processing using
Extended Projections, Proceedings of ACM Siggraph
2000, 239-248.

FERNANDO R. and PHARR M. 2005. GPU Gems 2, Pro-
gramming Techniques for High-Performance Graphic,
Addison Wesley Professional, 47-68.

GERMS R. and JANSEN F. W. 2001. Geometric Simplifi-
cation for efficient occlusion culling in urban scenes,
International Conference in Central Europe on Com-
puter Graphics, Visualization and Computer Vision
2001, 291-298.

GREENE N., KASS M. and MILLER G. 1993, Hierarchi-
cal z-buffer visibility, Proceedings of ACM SIG-
GRAPH 1993, 231-238.

HILLESLAND K., SALOMON B., LASTRA A. and
MANOCHA D. 2002. Fast and Simple Occlusion
Culling using hardware based depth queries, Technical
Report TR02-039, Department of Computer Science,
University of North Carolina.

HEY H. and PURGATHOFER W. 2001. Occlusion Cull-
ing Methods, Proceedings of Eurographics 2001, p.
43.

HOPPE H., DEROSE T., DUCHARD T., MCDONALD J.
and STUETZLE W. 1993. Mesh Optimization. Pro-
ceedings of ACM SIGGRAPH 1993, 19-26.

LAW F. and TAN T. 1999. Pre-processing Occlusion for
Real-Time Selective Refinement, Proceedings Sympo-
sium Interactive 3D Graphics, 47-53.

PLATE J., GRUNDHOEFER A., SCHMIDT B. and
FROEHLICH B. 2004. Occlusion Culling for Sub-
Surface Models in Geo-Scientific Applications, Sym-
posium on Visualization 2004, 267-272.

EL-SANA J., SOKOLOVSKY N. and SILVA C. 2001.
Integrating Occlusion Culling with View-Dependent
Rendering, IEEE Visualization 2001, 371-378.

SAONA-VÁZQUEZ C., NAVAZO I. and BRUNET P.
1999. The Visibility Octree. A Data Structure for 3D
Navigation, Computer & Graphics, 23(5), 635-664.

WANG Y. G., BAO H. J. and Peng Q. S. 1998. Acceler-
ated walkthroughs of virtual environments based on
visibility preprocessing and simplification, Computer
Graphics Forum, 17, 3, 187-194.

ZHANG H., MANOCHA D., HUDSON T. and HOFF III
K. E. 1997, Visibility Culling using Hierarchical Oc-
clusion Maps, Proceedings of ACM SIGGRAPH 1997,
77-88.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

