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• Computer Animation has been a 
fascinating branch of Computer 
Graphics

• Plenty of complex themes:
– physically-based animation 

(forward/ inverse kinematic, 
spring-mass systems, 
particle systems, rigid body 
simulation, etc.) 

– physics simulation 
– motion capture from real 

entities, like humans (face, 
body, movements, etc.) 

– animation of fluids, like 
liquids and gasses (fluid 
dynamics, etc.) 
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– modeling and animating 

human figures (reaching, 
grasping, walking, dressing, 
etc.) 

– motion capturing 
– Facial animation (muscle 

models, skin, lip 
synchronization, etc.) 

– Particle Systems, Herds. 
Schools, Crowd simulations



Animation

• Object definition for animation
• Movement paths, camera paths
• Articulated figures, Forward and Inverse Kinematics

• Motion capturing
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Representing object orientation
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• Suppose that I defined two key 
positions of a rigid body, and that I 
want to compute the equal steps 
between the two positions to 
compute the animation 
(each key position been defined by 
a Rotation-translation pair)

• For the translation part, it seems to 
be easy to interpolate between the 
positions.... but the rotation?

• Direct interpolation does not 
work, because the resulting 
interpolation matrices will not be 
normalized....

• But there ARE alternative 
methods to do this:

– Fixed angle
– Euler angle
– Axis angle
– Quaternions
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Fixed angle representation
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• Angles used to rotate 
around fixed axes

• One can rotate first 
around one main axis, 
then the second and 
then the third

• As long as one keeps 
always the same order, 
one should be fine

• But, if you apply 
consequently those, the 
second rotation will 
influence back the first 
rotation

• This effect is called 
gimbal lock

• The same problem 
makes interpolation 
between key positions a 
problem sometimes

• The resulting rotations 
will make the object 
swing out of the desired 
rotating plane 



Euler angle representation

January 21, 2020 Charles A. Wuethrich 7

• Here the axes of rotation are 
on the local coordinate 
system of the object

• Also here, the order of the 
rotations is indifferent

• In fact, this method is very 
similar to fixed axes, and has 
same advantages and 
disadvantages

• Euler‘s rotation theorem:  any 
orientation can be derived from 
another by ONE rotation around 
a particular axis
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Quaternions
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• This is the better approach to do 
interpolation of intermediate 
orientations when the object has 
3 DOF

• A quaternion is a 4-tuple of real 
numbers [a,b,c,d].

• Equivalently, it is a pair [s,v] of a 
scalar s and a 3D vector v.

• More, it can be defined as
w + xi + yj + zk (where i2 = j2 = 
k2 = -1 and ij = k = -ji with real w, 
x, y, z) 

• On quaternions one defines 
two operations:
– Addition:

[s1,v1]+ [s2,v2]=
    [s1+s2,v1+v2]

– Multiplication: 
 [s1,v1][s2,v2]=
      [s1s2-v1· v2, 
       s1v2+s2v1 +v1v2]

– Note that  multiplication is 
associative, but NOT 
commutative  q1q2¹q2q1



Quaternions: definitions
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• Units: 
– Additive: [0,0]

– Multiplicative: [1,0]=[1,0,0,0]

• Let v=[x,y,z]. 
Inverse:

– q-1=[s,v]-1=(1/║q║)2[s,-v],
where
 ║q║=(s2+║v║)1/2

• Obviously, qq-1=[1,0,0,0]

• A point in 3D space can be also 
represented as the quaternion 
[0.v]. 

– or, alternatively, a vector from 
the origin 

• Property: 
[0,v1][0,v2]=
 [0,v1  v2] iff v1  v2=0

• Def: Unit-length quaternion is a 
quaternion q such that ║q║=1.

• Obviously q, q/║q║ is a unit 
length quaternion



Rotating vectors through quaternions
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• Consider a vector [0,v], and consider a quaternion q:
– The rotated vector v´ of v through the quaternion q is the vector

        v´=Rotq(v)= qvq-1

– A sequence of rotations can be chained:
Rotp(Rotq(v))= q(pvp-1)q-1

= (qp)vp-1q)-1= Rotpq(v)

– Note that:
Rot-1(Rot(v))= v



Camera paths 
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• Like in real movies, in Computer 
Animation cameras are allowed 
to move

• This create a number of 
problems and issues which 
have been addressed with time

• How do I define movement of a 
camera?



Following a path 
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• Animating an object to move 
along a path is quite natural and 
common

• Not only following the path is 
needed: also moving the 
orientation

• Typically, one would have a 
local coordinate system 
associated with the object

• Let the coordinates be (u,v,w), 
and suppose they are right 
handed

• Suppose the origin of the coordinate 
system follows the curve P(s), and 
that the movement of P(s) is 
specified

• Call POS the current position
• One can view the u,v,w coordinates 

as a view vector, an up vector and a 
vector perpendicular to u and v

• This is similar to camera definition 
in Computer Graphics



Following a path: Frenet Frame
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• The orientation of the camera 
system can be made dependent 
from the properties of the curve 
P(s)

• A Frenet frame is given by the 
following axes definitions

– w follows the tangent of the 
curve (its first derivative P´(s))

– v is orthogonal to w and in the 
direction of the second order 
derivative (P´´(s))

– u is the cross product of w and 
v

• In symbols:
     w=P´(s)
     u=(P´(s)  P´´(s)
     v=w  u
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Following a path: Frenet Frame

January 21, 2020 Charles A. Wuethrich 14

• Frenet frames are quite nice, 
but bear some flaws

• When the curve has no 
curvature, its second order 
derivative is zero. Here the 
Frenet frame is undefined

– This problem can be solved by 
interpolating the Frenet frames 
at the start and end of the 
rectilineal trait

– Since the tangent vector must 
be the same at the extremities, 
it is only a rotation that has to 
be interpolated
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Following a path: Frenet Frame
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• A more complicated problem 
occurs at discontinuities in the 
curvature vector

• For example, when the path 
follows first a circle, and then a 
second circle

• At the problem point, the 
curvature will switch to pointing 
from one circle center to the 
other one

• Here, the Frenet frame is 
defined everywhere but is 
discontinuous

• Here, the object will rotate wildly 
along the path with „instant 
switches“

Problem spot

Curvature 
(left)

Curvature 
(right)



Following a path: Frenet Frame
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• The worst problem is that the 
path following is not so 
natural: 
– when we view at something, 

we we do not look along the 
tangent

– When we move, we 
anticipate curves

• Similar effect to your car light 
not following the road 

• Also, one might want to 
make the object bend 
towards the interior to 
„anticipate the force“

• .... or, opposite, to let it bend 
out to give the effect of a 
force acting on the object



Camera path following: Center of Interest
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• A more natural way of specifying the 
orientation of a camera is to use the 
center of interest (COI)

– One can view towards a fixed point

– Or alternatively the center of an 
object

• Good method for a camera circling 
some arena of action

• The center of interest is specified, 
and so the view vector w=COI-POS 

• This leaves one degree of freedom 
in camera specification

• One simple way is to set the view 
vector v as viewing „up“, i.e. 
perpendicular to w and lying in the 
wy plane 
    w=COI-POS
    u= w  y
    v= u  w

• This works quite well for a camera 
moving along a path and focussing 
to a single object.

• When it gets very close to the 
object, this results in drastic 
changes (fly-near effect)

• This is not always bad!!!



Camera path following: Center of Interest
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• There are variations to 
specifying a fixed point

• One can for example specify 
various points on the camera 
path itself

• The up vector 
– is usually specified as lying in 

the wy plane

• But one can also allow the user 
to input 

– Either a tilting value with 
respect to the default up vector

– Or the up vector on a whole

• Following a points on the path is 
relatively easy:

– If P(s) describes the position on 
the curve, then P(s+s), with s 
>0, specifies its position in the 
future

– It is advisable to choose points 
at equidistances on the curve, 
so as to make changes not that 
noticeable

– Alternatively, one can take the 
baricenter of some future points 
to avoid too much hopping

• The real flaw of this method is 
the fact that camera views look 
jerky



Camera path following: Center of Interest

January 21, 2020 Charles A. Wuethrich 19

• A better method is to use 
instead of some function of the 
position path, a different 
function altogether for the POI

• Let P(s) be the curve of the 
camera path, and C(s) the curve 
of the COI (obviously the 
animator specifies this)

• Similarly, and up vector path 
must be specified U(s), so that 
the general up direction is U(s)-
P(s)

• The resulting coordinates for the 
camera will then become

    w=C(s)-P(s)
    u=w  (U(s)-P(s))
    v=u  w

• This gives maximum control, but 
is also difficult to control.

• An easy way of specifying C(s) 
is to use fixed positions, with 
ease-in/ease-out moves 
between the different fixed 
points



Path along a surface
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• If an object needs to follow a 
surface when it moves, then a 
path on the surface itself has to 
be found

• If we know start and endpoints, 
then this is simple: 

– trace a plane „perpendicular“ to 
the surface

– Compute the intersection plane-
surface

• Alternatively, other methods can 
be used, for example if one 
wants to follow the „valleys“ on 
the surface

• Here „greedy“ methods can be 
used, or methods that compute 
the normal to the surface and 
follow it



Keyframe Interpolation

• Objects and topic events are 
usually set by the animators: 
these are called keyframes

• The computer interpolates 
between the keyframes to 
compute the whole movement 
along time

• Interpolation is done onto any 
parameter, like:

– object positions, 
– Control points of curves
– Colour
– Normals

• Intepolation is either linear or 
higher order

• Interpolation is easy if the 
defining parameters are the 
same number

P(u) Q(u)
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Hierarchical models: articulated figures
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• Hierarchical modeling is 
placing constraints on 
objects organized in a tree 
like structure

• Examples can be: 
– A planet system
– A robot arm

• The latter is quite common in 
graphics: it is constituted by 
objects connected end to 
end to form a multibody 
jointed chain

• These are called articulated 
figures

• They stem from robotics

• Robotics literature speaks 
with a different terminology:
– Manipulator: the sequence 

of objects connected by 
joints

– Links: the rigid objects 
making the chain

– Effector: the free end of the 
chain

– Frame: local coordinate 
system associated to each 
link



Hierarchical Modeling
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• In graphics, most of the 
links are revolute joints: 
here one link rotates 
around a fixed point of 
the other link

• The other interesting 
joint for graphics is the 
prismatic joint, where 
one link translates 
relative to the other

• Joints restrain the 
degree of freedom 
(DOF) of the links

• Joints with more than 
one degree of freedom 
are called complex

• Typically, when a joint 
has n>1 DOF it is 
modeled as a set of n 
one degree of freedom 
joints 



Hierarchical Modeling
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• Humans and animals can be 
modeled as hierarchical 
linkages

• These are represented as a 
tree structure of nodes 
connected by arcs

• The highest node of this 
structure is called the root 
node, and is the node that 
has position WRT the global 
coordinate system

• All other nodes have their 
position only as relative to 
the root node

• A node that has no child is 
called a leaf node

• Each node contains the info 
necessary to define the 
position of the corresponding 
part

• Two types of transformations 
are associated with an arc 
leading to a node:
– Rotation and translation of 

the object to its position of 
attachment to the father link

– Information responsible for 
the joint articulation 



Hierarchical Modeling
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• How does this work?
• The idea is simple, store at each 

node 
– Info on the node geometry
– The transformation (its rotation) 

with respect to the father node 
in the tree

• To obtain the position of the i-th 
node in the chain, one has to 
simply multiply the 
transformations to obtain the 
position of the current arc to be 
displayed

• The root node of course 
contains info of its absolute 
position and orientation in the 
global coord. system 

• To obtain the position of K2 in 
WCS, one will then have to 
multiply T0T1T2 

T0: transformation to 
       rotate K0 in WCS

T1: transformation to 
       rotate K1 WRT K0

    = rotation by 1

T2: transformation to 
       rotate K2 WRT K1

   = rotation by 2

1

2



Forward Kinematics
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• Traversing the tree of the nodes 
produces the correct picture of 
the object

• Traversal is done depth first 
until a leaf is met

• Once the corresponding arc is 
evaluated, the tree is 
backtracked up until the first 
unexplored node is met

• This is repeated until 
there are no nodes left 
inexplored

• A stack of transforms is kept
• When tree is traversed down-

wards, the corresponding trans-
formation is added to the stack

• Moving up pops the 
transformation from the stack

• Current node position is 
generated through multiplying 
the current stack transforms 



Forward Kinematics
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• To animate the whole, the 
rotation parameters are 
manipulated and the 
corresponding transforms 
are actualized

• A complete set of rotations 
on the whole arcs is called a 
pose

• A pose is obviously 
a vector of rotations

• Moving an object by 
positioning all its single arcs 
manually is called forward 
kinematics

• This is not so user-friendly



Inverse Kinematics
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• Instead of specifying the whole 
links, the animator  might want 
to specify the end position of the 
effector (inverse kinematics)

• The computer computes then 
the position of the other links 
and their mutual angles

• One can have zero, one or 
multiple solutions

– No solution: overconstrained 
problem

– Multiple solutions: 
underconstrained problem

– Reachable workspace: volume 
that end effector can reach

– Dextrous workspace: volume 
that end effector can reach in 
any orientation

• Computing the solution to the 
problem can at times be tricky



Inverse Kinematics
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• If the mechanism is simple 
enough, then the solution can 
be computed analytically

• Given an initial and a final pose 
vector, the solution can be 
computed by interpolating the 
values of the pose vector

• Consider the figure: the 2nd arm 
rotates aroound the end of the 
1st arm.

• It is clear that all positions 
between |L1-L2| and |L1+L2| can 
be reached by the arm.

• Set the origin like in the drawing
• In inverse kinematics, the user 

gives the (X,Y) position of the 
end effector

• Obviously there are only 
solutions if
 |L1-L2|≤√X2+Y2≤|L1+L2| 

1

2L1

L2

O x

y



Inverse Kinematics
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• cosT=X/(X2+Y2)½

T=acos(X/(X2+Y2)½)

• Because of the cosine rule we 
have also that
  cos(1-T)=
  (L1

2+X2+Y2-L2
2)/2L1√X2+Y2

and
  cos(- 2)=

   (L1
2+ L2

2-(X2+Y2) ½)/2L1L2

from which  we have
   1=acos((L1

2+X2+Y2-L2
2)

          /2L1(X2+Y2) ½+ T

and
2=acos((L1

2+ L2
2-(X2+Y2))/2L1L2)

1

2

L1
L2

O x

y
(X,Y)

T

• Note that two solutions are 
possible, simmetric with 
respect to the line joining the 
origin and (X,Y)



Inverse Kinematics
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• In general, for the quite simple armatures used in robotics it is 
possible to implement such analytic solutions 

• Unfortunately this works only for simple cases
• For more complicated armatures, the number of possible 

solutions there may be infinite solutions for a given effector 
location, and computations become so difficult to do that 
iterative numeric solution must be used



Jacobians

January 21, 2020 Charles A. Wuethrich 32

• Suppose you have 
– six independent variables and
– six unknowns that are functions 

of these variables
  y1=f1(x1,x2,x3,x4,x5,x6)
  y2=f2(x1,x2,x3,x4,x5,x6)
  y3=f3(x1,x2,x3,x4,x5,x6)
  y4=f4(x1,x2,x3,x4,x5,x6)
  y5=f5(x1,x2,x3,x4,x5,x6)
  y6=f6(x1,x2,x3,x4,x5,x6)

       Y=F(X)

• When the solution is not 
analytically computable, 
incremental methods 
converging to the solution 
are used

• To do this, the matrix of the 
partial derivatives has to be 
computed

• This is called the Jacobian

• The Jacobian can be seen as a 
mapping of  the velocities of X 
to velocities of Y.

• In other words, how changes of 
the X variables map into effector 
changes. 

J=[
∂ f 1

∂ x1

∂ f 1

∂ x2

⋯
∂ f 1

∂ xn
∂ f 2

∂ x1

∂ f 2

∂ x2

⋯
∂ f 2

∂ x1

⋮ ⋮ ⋱ ⋮

∂ f n
∂ x1

∂ f n
∂ x2

⋯
∂ f n
∂ xn

]



Using Jacobians
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• The Jacobian matrix is a 
linear function of the xi 
variables

• When time moves on to the 
next instant, X has changed 
and so has the Jacobian

• The desired change will be 
based on the difference 
between the current 
position/orientation to the 
desired goal configuration

• If one can invert this equation, 
we can compute from the Y 
positions the necessary X 
positions 

• Of course the math is not easy
• Finding the real solution will 

involve writing the Taylor series 
of the original equations, which 
is beyond the scope of this 
course. 



Motion tracking
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• Making synthetic movement of „real characters“ is complicated.

• Recently, devices appeared that are capable of capturing real 
movement and applying it to virtual characters.

• This is called motion capture: 
– The idea is to use either sensor positioning, or capture images and identify 

the marker positions
– Real humans/animals are therefore equipped with sensors (or markers) 

applied to the different body parts
– The xyz positions of these markers in time are recorded while the „actor“ is 

performing movement
– More recent equipment (e.g. Kinect) do this without markers (using IR+SW)



Motion tracking
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• There are basically two ways of 
doing motion tracking: 

• Electromagnetic sensors:
– uses sensors positioned at the 

joints that transmit their position 
and orientation

– Transmission is done either by 
cable (= limit freedom of 
movement) or by wireless

– De facto real time
– Main problem: room must be 

free of field distortions
– Limited range, accuracy 

problems
– High purchase cost
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Motion tracking: optical
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• Optical tracking:
– Uses video cams to record 

motion of the subject
– Easier to wear (reflective 

markers are applied to 
subject)

– Wider range
– No cables
– Real time difficult
– Data is noisy and error 

prone
– Because orientation is not 

directly generated, more 
markers are required than 
with magnetic trackers

– Cameras may vary in quality 
and principle:

• Infrared

• Very high resolution
• But also available for 

consumer videocams => 
cheap!

– In the next, we will take a 
look at how optical tracking 
works



Motion tracking: optical

• Objective is to reconstruct 
the three-dimensional model 
of a motion and apply it to a 
synthetic model 

• Work can be subdivided in 3 
tasks:
– Image processing: Images 

need to be processed so as 
to be able to locate, identify 
and correlate the markers

– Camera calibration: 3D 
locations of markers have to 
be extracted from the 2D 
images

– Constraint satisfaction: The 
3D marker locations have to 
be constrained to the 
physical model whose 
motion is being captured 



Optical tracking: Image Processing
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• Optical markers can be of 
different shapes: pingpong balls, 
other markers...

• Stuck to the joints with 
velcro/tape

• One of the problem is that they 
stick out of the body, so there is 
a difference between where 
they are and where the real 
joints are

• Moreover, they can moveWRT 
the real joint too

• Once video digitized, it can be 
analyzed

• If background static, it can be 
subtracted

• Once this is done, the marker 
gets searched for

– Of course, with more markers it 
is more complicated, because 
they may get occluded

– Therefore one has to track the 
markers across the frames 



Optical tracking: Image Processing
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• Tracking trackers across the frames 
is also difficult

• One can use frame coherence, 
which works as long as the subject 
moves slowly enough

• One can also use logical coherence, 
i.e. when walking feet are always at 
the floor

• One can use also prediction 
methods: if I know how fast the 
subject is, I can try to „guess“ the 
whereabouts of the marker in the 
next frame 

• Occlusion is a further problem: if 
more markers disappear, it is 
difficult to know which is which when 
they reappear

• Also, when markers pass near each 
other, they might be swapped next 
frame

• This might generate markers 
swapping positions

• Sometimes, this can be solved by 
taking a 3D image (with 2 cameras). 

• Other times, human intervention is 
necessary



Optical tracking: Camera Calibration
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• Before the 3D position of a 
marker can be reconstructed, 
one needs to know 

– location and orientation of the 
cameras in world coords

– Focal length, image center and 
aspect ratio have to be known

• The camera system is modelled 
like in Computer Graphics

• The image of a point is done by 
projecting a ray from the point to 
the center of projection

• Calibration is done by recording 
a number of known points in 
space

WCS

World space
point

Focal length

Projection 
center



Optical tracking: Position reconstruction

January 21, 2020 Charles A. Wuethrich 41

• At least two views are needed to 
reconstruct 3D

• Since we know I1 and I2, we 
deduce
    P=C1+k1(I1-C1)
     P=C2+k2(I2-C2),
thus
 C1+k1(I1-C1)= C2+k2(I2-C2)
which are 3 equations in 2 variables, 
and this solvable

• Unfortunately, noise complicates it, 
because the two straight lines do 
not necessarily touch

• This can be solved by finding P1 and 
P2  to the lines through the other 
cameras, and computing the 
midpoint of the segment P1P2

P
C1

I1

I2

C2



Optical tracking: Position reconstruction
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• As few as 14 markers can 
provide some simple tracking of 
a human figure

• Complete marking sets include 
31 markers, including elbow, 
kneews, chest, hands, toes, 
ankles, and spine, as well as 
scapulae and more...

• The more markers one has, the 
more it is necessary to have 
more than 2 cameras, so as not 
to have marker occlusion

• Each marker at each frame 
needs to be seen by at least two 
cameras

• A typical system would have 8 
cams

• Multiple cams requre some 
more effort in synchronizing 
them 



Optical tracking: fitting to skeleton
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• The next step is to attach the 
markers to the skeleton

• One could do it directly, but 
unfortunately it does not work 
well, because in general, marker 
distances are not preserved

• Markers are not exactly on the 
joints, but on the skin

• One can compensate for that by 
setting markers at their right 
positions, but it is still imprecise 
because the body is elastic

• Another solution is to put two 
markers on the sides of the joint

• This works well (but doubles 
complexity), but not for joints 
which are inaccessible

• Simple geometric calculations 
lead to deduce the correct joint-
marker mutual positions

• Once this is known, the 
movement can be applied to the 
skeleton

• Watch out for imprecisions of 
the data obtained, that can lead 
to visible artifacts (avoid floor 
penetration)



Conclusion

• There are loads of other research themes connected 
with Computer Animation

• This set of slides was simply an appetizer,
like these

• In the Masters course, I give a complete Computer 
Animation lesson in the Summer Term
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+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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