
Computer Graphics:
14-Computer Animation

Prof. Dr. Charles A. Wüthrich,

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de

Introduction

January 21, 2020 Charles A. Wuethrich 2

• Computer Animation has been a
fascinating branch of Computer
Graphics

• Plenty of complex themes:
– physically-based animation

(forward/ inverse kinematic,
spring-mass systems,
particle systems, rigid body
simulation, etc.)

– physics simulation
– motion capture from real

entities, like humans (face,
body, movements, etc.)

– animation of fluids, like
liquids and gasses (fluid
dynamics, etc.)

Introduction

January 21, 2020 Charles A. Wuethrich 3

– modeling and animating

human figures (reaching,
grasping, walking, dressing,
etc.)

– motion capturing
– Facial animation (muscle

models, skin, lip
synchronization, etc.)

– Particle Systems, Herds.
Schools, Crowd simulations

Animation

• Object definition for animation
• Movement paths, camera paths
• Articulated figures, Forward and Inverse Kinematics

• Motion capturing

January 21, 2020 4Charles A. Wuethrich

Representing object orientation

January 21, 2020 Charles A. Wuethrich 5

• Suppose that I defined two key
positions of a rigid body, and that I
want to compute the equal steps
between the two positions to
compute the animation
(each key position been defined by
a Rotation-translation pair)

• For the translation part, it seems to
be easy to interpolate between the
positions.... but the rotation?

• Direct interpolation does not
work, because the resulting
interpolation matrices will not be
normalized....

• But there ARE alternative
methods to do this:

– Fixed angle
– Euler angle
– Axis angle
– Quaternions

x

y

z

y´

x´

z´

x´´

y´´

z´´

Fixed angle representation

January 21, 2020 Charles A. Wuethrich 6

• Angles used to rotate
around fixed axes

• One can rotate first
around one main axis,
then the second and
then the third

• As long as one keeps
always the same order,
one should be fine

• But, if you apply
consequently those, the
second rotation will
influence back the first
rotation

• This effect is called
gimbal lock

• The same problem
makes interpolation
between key positions a
problem sometimes

• The resulting rotations
will make the object
swing out of the desired
rotating plane

Euler angle representation

January 21, 2020 Charles A. Wuethrich 7

• Here the axes of rotation are
on the local coordinate
system of the object

• Also here, the order of the
rotations is indifferent

• In fact, this method is very
similar to fixed axes, and has
same advantages and
disadvantages

• Euler‘s rotation theorem: any
orientation can be derived from
another by ONE rotation around
a particular axis

x

y

z

Yaw

Pitch

Roll

y

x

z

Quaternions

January 21, 2020 Charles A. Wuethrich 8

• This is the better approach to do
interpolation of intermediate
orientations when the object has
3 DOF

• A quaternion is a 4-tuple of real
numbers [a,b,c,d].

• Equivalently, it is a pair [s,v] of a
scalar s and a 3D vector v.

• More, it can be defined as
w + xi + yj + zk (where i2 = j2 =
k2 = -1 and ij = k = -ji with real w,
x, y, z)

• On quaternions one defines
two operations:
– Addition:

[s1,v1]+ [s2,v2]=
 [s1+s2,v1+v2]

– Multiplication:
 [s1,v1][s2,v2]=
 [s1s2-v1· v2,
 s1v2+s2v1 +v1v2]

– Note that multiplication is
associative, but NOT
commutative  q1q2¹q2q1

Quaternions: definitions

January 21, 2020 Charles A. Wuethrich 9

• Units:
– Additive: [0,0]

– Multiplicative: [1,0]=[1,0,0,0]

• Let v=[x,y,z].
Inverse:

– q-1=[s,v]-1=(1/║q║)2[s,-v],
where
 ║q║=(s2+║v║)1/2

• Obviously, qq-1=[1,0,0,0]

• A point in 3D space can be also
represented as the quaternion
[0.v].

– or, alternatively, a vector from
the origin

• Property:
[0,v1][0,v2]=
 [0,v1  v2] iff v1  v2=0

• Def: Unit-length quaternion is a
quaternion q such that ║q║=1.

• Obviously q, q/║q║ is a unit
length quaternion

Rotating vectors through quaternions

January 21, 2020 Charles A. Wuethrich 10

• Consider a vector [0,v], and consider a quaternion q:
– The rotated vector v´ of v through the quaternion q is the vector

 v´=Rotq(v)= qvq-1

– A sequence of rotations can be chained:
Rotp(Rotq(v))= q(pvp-1)q-1

= (qp)vp-1q)-1= Rotpq(v)

– Note that:
Rot-1(Rot(v))= v

Camera paths

January 21, 2020 Charles A. Wuethrich 11

• Like in real movies, in Computer
Animation cameras are allowed
to move

• This create a number of
problems and issues which
have been addressed with time

• How do I define movement of a
camera?

Following a path

January 21, 2020 Charles A. Wuethrich 12

• Animating an object to move
along a path is quite natural and
common

• Not only following the path is
needed: also moving the
orientation

• Typically, one would have a
local coordinate system
associated with the object

• Let the coordinates be (u,v,w),
and suppose they are right
handed

• Suppose the origin of the coordinate
system follows the curve P(s), and
that the movement of P(s) is
specified

• Call POS the current position
• One can view the u,v,w coordinates

as a view vector, an up vector and a
vector perpendicular to u and v

• This is similar to camera definition
in Computer Graphics

Following a path: Frenet Frame

January 21, 2020 Charles A. Wuethrich 13

• The orientation of the camera
system can be made dependent
from the properties of the curve
P(s)

• A Frenet frame is given by the
following axes definitions

– w follows the tangent of the
curve (its first derivative P´(s))

– v is orthogonal to w and in the
direction of the second order
derivative (P´´(s))

– u is the cross product of w and
v

• In symbols:
 w=P´(s)
 u=(P´(s)  P´´(s)
 v=w  u

u

w

v

Following a path: Frenet Frame

January 21, 2020 Charles A. Wuethrich 14

• Frenet frames are quite nice,
but bear some flaws

• When the curve has no
curvature, its second order
derivative is zero. Here the
Frenet frame is undefined

– This problem can be solved by
interpolating the Frenet frames
at the start and end of the
rectilineal trait

– Since the tangent vector must
be the same at the extremities,
it is only a rotation that has to
be interpolated

u

w

v u
w

v

Following a path: Frenet Frame

January 21, 2020 Charles A. Wuethrich 15

• A more complicated problem
occurs at discontinuities in the
curvature vector

• For example, when the path
follows first a circle, and then a
second circle

• At the problem point, the
curvature will switch to pointing
from one circle center to the
other one

• Here, the Frenet frame is
defined everywhere but is
discontinuous

• Here, the object will rotate wildly
along the path with „instant
switches“

Problem spot

Curvature
(left)

Curvature
(right)

Following a path: Frenet Frame

January 21, 2020 Charles A. Wuethrich 16

• The worst problem is that the
path following is not so
natural:
– when we view at something,

we we do not look along the
tangent

– When we move, we
anticipate curves

• Similar effect to your car light
not following the road

• Also, one might want to
make the object bend
towards the interior to
„anticipate the force“

• or, opposite, to let it bend
out to give the effect of a
force acting on the object

Camera path following: Center of Interest

January 21, 2020 Charles A. Wuethrich 17

• A more natural way of specifying the
orientation of a camera is to use the
center of interest (COI)

– One can view towards a fixed point

– Or alternatively the center of an
object

• Good method for a camera circling
some arena of action

• The center of interest is specified,
and so the view vector w=COI-POS

• This leaves one degree of freedom
in camera specification

• One simple way is to set the view
vector v as viewing „up“, i.e.
perpendicular to w and lying in the
wy plane
 w=COI-POS
 u= w  y
 v= u  w

• This works quite well for a camera
moving along a path and focussing
to a single object.

• When it gets very close to the
object, this results in drastic
changes (fly-near effect)

• This is not always bad!!!

Camera path following: Center of Interest

January 21, 2020 Charles A. Wuethrich 18

• There are variations to
specifying a fixed point

• One can for example specify
various points on the camera
path itself

• The up vector
– is usually specified as lying in

the wy plane

• But one can also allow the user
to input

– Either a tilting value with
respect to the default up vector

– Or the up vector on a whole

• Following a points on the path is
relatively easy:

– If P(s) describes the position on
the curve, then P(s+s), with s
>0, specifies its position in the
future

– It is advisable to choose points
at equidistances on the curve,
so as to make changes not that
noticeable

– Alternatively, one can take the
baricenter of some future points
to avoid too much hopping

• The real flaw of this method is
the fact that camera views look
jerky

Camera path following: Center of Interest

January 21, 2020 Charles A. Wuethrich 19

• A better method is to use
instead of some function of the
position path, a different
function altogether for the POI

• Let P(s) be the curve of the
camera path, and C(s) the curve
of the COI (obviously the
animator specifies this)

• Similarly, and up vector path
must be specified U(s), so that
the general up direction is U(s)-
P(s)

• The resulting coordinates for the
camera will then become

 w=C(s)-P(s)
 u=w  (U(s)-P(s))
 v=u  w

• This gives maximum control, but
is also difficult to control.

• An easy way of specifying C(s)
is to use fixed positions, with
ease-in/ease-out moves
between the different fixed
points

Path along a surface

January 21, 2020 Charles A. Wuethrich 20

• If an object needs to follow a
surface when it moves, then a
path on the surface itself has to
be found

• If we know start and endpoints,
then this is simple:

– trace a plane „perpendicular“ to
the surface

– Compute the intersection plane-
surface

• Alternatively, other methods can
be used, for example if one
wants to follow the „valleys“ on
the surface

• Here „greedy“ methods can be
used, or methods that compute
the normal to the surface and
follow it

Keyframe Interpolation

• Objects and topic events are
usually set by the animators:
these are called keyframes

• The computer interpolates
between the keyframes to
compute the whole movement
along time

• Interpolation is done onto any
parameter, like:

– object positions,
– Control points of curves
– Colour
– Normals

• Intepolation is either linear or
higher order

• Interpolation is easy if the
defining parameters are the
same number

P(u) Q(u)

January 21, 2020 21Charles A. Wuethrich

Hierarchical models: articulated figures

January 21, 2020 Charles A. Wuethrich 22

• Hierarchical modeling is
placing constraints on
objects organized in a tree
like structure

• Examples can be:
– A planet system
– A robot arm

• The latter is quite common in
graphics: it is constituted by
objects connected end to
end to form a multibody
jointed chain

• These are called articulated
figures

• They stem from robotics

• Robotics literature speaks
with a different terminology:
– Manipulator: the sequence

of objects connected by
joints

– Links: the rigid objects
making the chain

– Effector: the free end of the
chain

– Frame: local coordinate
system associated to each
link

Hierarchical Modeling

January 21, 2020 Charles A. Wuethrich 23

• In graphics, most of the
links are revolute joints:
here one link rotates
around a fixed point of
the other link

• The other interesting
joint for graphics is the
prismatic joint, where
one link translates
relative to the other

• Joints restrain the
degree of freedom
(DOF) of the links

• Joints with more than
one degree of freedom
are called complex

• Typically, when a joint
has n>1 DOF it is
modeled as a set of n
one degree of freedom
joints

Hierarchical Modeling

January 21, 2020 Charles A. Wuethrich 24

• Humans and animals can be
modeled as hierarchical
linkages

• These are represented as a
tree structure of nodes
connected by arcs

• The highest node of this
structure is called the root
node, and is the node that
has position WRT the global
coordinate system

• All other nodes have their
position only as relative to
the root node

• A node that has no child is
called a leaf node

• Each node contains the info
necessary to define the
position of the corresponding
part

• Two types of transformations
are associated with an arc
leading to a node:
– Rotation and translation of

the object to its position of
attachment to the father link

– Information responsible for
the joint articulation

Hierarchical Modeling

January 21, 2020 Charles A. Wuethrich 25

• How does this work?
• The idea is simple, store at each

node
– Info on the node geometry
– The transformation (its rotation)

with respect to the father node
in the tree

• To obtain the position of the i-th
node in the chain, one has to
simply multiply the
transformations to obtain the
position of the current arc to be
displayed

• The root node of course
contains info of its absolute
position and orientation in the
global coord. system

• To obtain the position of K2 in
WCS, one will then have to
multiply T0T1T2

T0: transformation to
 rotate K0 in WCS

T1: transformation to
 rotate K1 WRT K0

 = rotation by 1

T2: transformation to
 rotate K2 WRT K1

 = rotation by 2

1

2

Forward Kinematics

January 21, 2020 Charles A. Wuethrich 26

• Traversing the tree of the nodes
produces the correct picture of
the object

• Traversal is done depth first
until a leaf is met

• Once the corresponding arc is
evaluated, the tree is
backtracked up until the first
unexplored node is met

• This is repeated until
there are no nodes left
inexplored

• A stack of transforms is kept
• When tree is traversed down-

wards, the corresponding trans-
formation is added to the stack

• Moving up pops the
transformation from the stack

• Current node position is
generated through multiplying
the current stack transforms

Forward Kinematics

January 21, 2020 Charles A. Wuethrich 27

• To animate the whole, the
rotation parameters are
manipulated and the
corresponding transforms
are actualized

• A complete set of rotations
on the whole arcs is called a
pose

• A pose is obviously
a vector of rotations

• Moving an object by
positioning all its single arcs
manually is called forward
kinematics

• This is not so user-friendly

Inverse Kinematics

January 21, 2020 Charles A. Wuethrich 28

• Instead of specifying the whole
links, the animator might want
to specify the end position of the
effector (inverse kinematics)

• The computer computes then
the position of the other links
and their mutual angles

• One can have zero, one or
multiple solutions

– No solution: overconstrained
problem

– Multiple solutions:
underconstrained problem

– Reachable workspace: volume
that end effector can reach

– Dextrous workspace: volume
that end effector can reach in
any orientation

• Computing the solution to the
problem can at times be tricky

Inverse Kinematics

January 21, 2020 Charles A. Wuethrich 29

• If the mechanism is simple
enough, then the solution can
be computed analytically

• Given an initial and a final pose
vector, the solution can be
computed by interpolating the
values of the pose vector

• Consider the figure: the 2nd arm
rotates aroound the end of the
1st arm.

• It is clear that all positions
between |L1-L2| and |L1+L2| can
be reached by the arm.

• Set the origin like in the drawing
• In inverse kinematics, the user

gives the (X,Y) position of the
end effector

• Obviously there are only
solutions if
 |L1-L2|≤√X2+Y2≤|L1+L2|

1

2L1

L2

O x

y

Inverse Kinematics

January 21, 2020 Charles A. Wuethrich 30

• cosT=X/(X2+Y2)½

T=acos(X/(X2+Y2)½)

• Because of the cosine rule we
have also that
 cos(1-T)=
 (L1

2+X2+Y2-L2
2)/2L1√X2+Y2

and
 cos(- 2)=

 (L1
2+ L2

2-(X2+Y2) ½)/2L1L2

from which we have
 1=acos((L1

2+X2+Y2-L2
2)

 /2L1(X2+Y2) ½+ T

and
2=acos((L1

2+ L2
2-(X2+Y2))/2L1L2)

1

2

L1
L2

O x

y
(X,Y)

T

• Note that two solutions are
possible, simmetric with
respect to the line joining the
origin and (X,Y)

Inverse Kinematics

January 21, 2020 Charles A. Wuethrich 31

• In general, for the quite simple armatures used in robotics it is
possible to implement such analytic solutions

• Unfortunately this works only for simple cases
• For more complicated armatures, the number of possible

solutions there may be infinite solutions for a given effector
location, and computations become so difficult to do that
iterative numeric solution must be used

Jacobians

January 21, 2020 Charles A. Wuethrich 32

• Suppose you have
– six independent variables and
– six unknowns that are functions

of these variables
 y1=f1(x1,x2,x3,x4,x5,x6)
 y2=f2(x1,x2,x3,x4,x5,x6)
 y3=f3(x1,x2,x3,x4,x5,x6)
 y4=f4(x1,x2,x3,x4,x5,x6)
 y5=f5(x1,x2,x3,x4,x5,x6)
 y6=f6(x1,x2,x3,x4,x5,x6)

 Y=F(X)

• When the solution is not
analytically computable,
incremental methods
converging to the solution
are used

• To do this, the matrix of the
partial derivatives has to be
computed

• This is called the Jacobian

• The Jacobian can be seen as a
mapping of the velocities of X
to velocities of Y.

• In other words, how changes of
the X variables map into effector
changes.

J=[
∂ f 1

∂ x1

∂ f 1

∂ x2

⋯
∂ f 1

∂ xn
∂ f 2

∂ x1

∂ f 2

∂ x2

⋯
∂ f 2

∂ x1

⋮ ⋮ ⋱ ⋮

∂ f n
∂ x1

∂ f n
∂ x2

⋯
∂ f n
∂ xn

]

Using Jacobians

January 21, 2020 Charles A. Wuethrich 33

• The Jacobian matrix is a
linear function of the xi
variables

• When time moves on to the
next instant, X has changed
and so has the Jacobian

• The desired change will be
based on the difference
between the current
position/orientation to the
desired goal configuration

• If one can invert this equation,
we can compute from the Y
positions the necessary X
positions

• Of course the math is not easy
• Finding the real solution will

involve writing the Taylor series
of the original equations, which
is beyond the scope of this
course.

Motion tracking

January 21, 2020 Charles A. Wuethrich 34

• Making synthetic movement of „real characters“ is complicated.

• Recently, devices appeared that are capable of capturing real
movement and applying it to virtual characters.

• This is called motion capture:
– The idea is to use either sensor positioning, or capture images and identify

the marker positions
– Real humans/animals are therefore equipped with sensors (or markers)

applied to the different body parts
– The xyz positions of these markers in time are recorded while the „actor“ is

performing movement
– More recent equipment (e.g. Kinect) do this without markers (using IR+SW)

Motion tracking

January 21, 2020 Charles A. Wuethrich 35

• There are basically two ways of
doing motion tracking:

• Electromagnetic sensors:
– uses sensors positioned at the

joints that transmit their position
and orientation

– Transmission is done either by
cable (= limit freedom of
movement) or by wireless

– De facto real time
– Main problem: room must be

free of field distortions
– Limited range, accuracy

problems
– High purchase cost

C
op

yr
ig

ht
 (

c)
 M

et
am

ot
io

n.
co

m

Motion tracking: optical

January 21, 2020 Charles A. Wuethrich 36

• Optical tracking:
– Uses video cams to record

motion of the subject
– Easier to wear (reflective

markers are applied to
subject)

– Wider range
– No cables
– Real time difficult
– Data is noisy and error

prone
– Because orientation is not

directly generated, more
markers are required than
with magnetic trackers

– Cameras may vary in quality
and principle:

• Infrared

• Very high resolution
• But also available for

consumer videocams =>
cheap!

– In the next, we will take a
look at how optical tracking
works

Motion tracking: optical

• Objective is to reconstruct
the three-dimensional model
of a motion and apply it to a
synthetic model

• Work can be subdivided in 3
tasks:
– Image processing: Images

need to be processed so as
to be able to locate, identify
and correlate the markers

– Camera calibration: 3D
locations of markers have to
be extracted from the 2D
images

– Constraint satisfaction: The
3D marker locations have to
be constrained to the
physical model whose
motion is being captured

Optical tracking: Image Processing

January 21, 2020 Charles A. Wuethrich 38

• Optical markers can be of
different shapes: pingpong balls,
other markers...

• Stuck to the joints with
velcro/tape

• One of the problem is that they
stick out of the body, so there is
a difference between where
they are and where the real
joints are

• Moreover, they can moveWRT
the real joint too

• Once video digitized, it can be
analyzed

• If background static, it can be
subtracted

• Once this is done, the marker
gets searched for

– Of course, with more markers it
is more complicated, because
they may get occluded

– Therefore one has to track the
markers across the frames

Optical tracking: Image Processing

January 21, 2020 Charles A. Wuethrich 39

• Tracking trackers across the frames
is also difficult

• One can use frame coherence,
which works as long as the subject
moves slowly enough

• One can also use logical coherence,
i.e. when walking feet are always at
the floor

• One can use also prediction
methods: if I know how fast the
subject is, I can try to „guess“ the
whereabouts of the marker in the
next frame

• Occlusion is a further problem: if
more markers disappear, it is
difficult to know which is which when
they reappear

• Also, when markers pass near each
other, they might be swapped next
frame

• This might generate markers
swapping positions

• Sometimes, this can be solved by
taking a 3D image (with 2 cameras).

• Other times, human intervention is
necessary

Optical tracking: Camera Calibration

January 21, 2020 Charles A. Wuethrich 40

• Before the 3D position of a
marker can be reconstructed,
one needs to know

– location and orientation of the
cameras in world coords

– Focal length, image center and
aspect ratio have to be known

• The camera system is modelled
like in Computer Graphics

• The image of a point is done by
projecting a ray from the point to
the center of projection

• Calibration is done by recording
a number of known points in
space

WCS

World space
point

Focal length

Projection
center

Optical tracking: Position reconstruction

January 21, 2020 Charles A. Wuethrich 41

• At least two views are needed to
reconstruct 3D

• Since we know I1 and I2, we
deduce
 P=C1+k1(I1-C1)
 P=C2+k2(I2-C2),
thus
 C1+k1(I1-C1)= C2+k2(I2-C2)
which are 3 equations in 2 variables,
and this solvable

• Unfortunately, noise complicates it,
because the two straight lines do
not necessarily touch

• This can be solved by finding P1 and
P2  to the lines through the other
cameras, and computing the
midpoint of the segment P1P2

P
C1

I1

I2

C2

Optical tracking: Position reconstruction

January 21, 2020 Charles A. Wuethrich 42

• As few as 14 markers can
provide some simple tracking of
a human figure

• Complete marking sets include
31 markers, including elbow,
kneews, chest, hands, toes,
ankles, and spine, as well as
scapulae and more...

• The more markers one has, the
more it is necessary to have
more than 2 cameras, so as not
to have marker occlusion

• Each marker at each frame
needs to be seen by at least two
cameras

• A typical system would have 8
cams

• Multiple cams requre some
more effort in synchronizing
them

Optical tracking: fitting to skeleton

January 21, 2020 Charles A. Wuethrich 43

• The next step is to attach the
markers to the skeleton

• One could do it directly, but
unfortunately it does not work
well, because in general, marker
distances are not preserved

• Markers are not exactly on the
joints, but on the skin

• One can compensate for that by
setting markers at their right
positions, but it is still imprecise
because the body is elastic

• Another solution is to put two
markers on the sides of the joint

• This works well (but doubles
complexity), but not for joints
which are inaccessible

• Simple geometric calculations
lead to deduce the correct joint-
marker mutual positions

• Once this is known, the
movement can be applied to the
skeleton

• Watch out for imprecisions of
the data obtained, that can lead
to visible artifacts (avoid floor
penetration)

Conclusion

• There are loads of other research themes connected
with Computer Animation

• This set of slides was simply an appetizer,
like these

• In the Masters course, I give a complete Computer
Animation lesson in the Summer Term

January 21, 2020 Charles A. Wuethrich 44

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

January 21, 2020 45Charles A. Wuethrich

	Computer Graphics: 14-Computer Animation
	PowerPoint Presentation
	Introduction
	Animation
	Representing object orientation
	Fixed angle representation
	Euler angle representation
	Quaternions
	Quaternions: definitions
	Rotating vectors through quaternions
	Camera paths
	Following a path
	Following a path: Frenet Frame
	Slide 14
	Slide 15
	Slide 16
	Camera path following: Center of Interest
	Slide 18
	Slide 19
	Path along a surface
	Keyframe Interpolation
	Hierarchical models: articulated figures
	Hierarchical Modeling
	Slide 24
	Slide 25
	Forward Kinematics
	Slide 27
	Inverse Kinematics
	Slide 29
	Slide 30
	Slide 31
	Jacobians
	Using Jacobians
	Motion tracking
	Slide 35
	Motion tracking: optical
	Slide 37
	Optical tracking: Image Processing
	Slide 39
	Optical tracking: Camera Calibration
	Optical tracking: Position reconstruction
	Slide 42
	Optical tracking: fitting to skeleton
	Conclusion
	Slide 45

