Computer Graphics: 14-Computer Animation

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Introduction

- Computer Animation has been a fascinating branch of Computer Graphics
- Plenty of complex themes:
- physically-based animation (forward/ inverse kinematic, spring-mass systems, particle systems, rigid body simulation, etc.)
- physics simulation
- motion capture from real entities, like humans (face, body, movements, etc.)
- animation of fluids, like liquids and gasses (fluid dynamics, etc.)

Introduction

- modeling and animating human figures (reaching, grasping, walking, dressing, etc.)
- motion capturing
- Facial animation (muscle models, skin, lip synchronization, etc.)
- Particle Systems, Herds. Schools, Crowd simulations

Animation

- Object definition for animation
- Movement paths, camera paths
- Articulated figures, Forward and Inverse Kinematics
- Motion capturing

Representing object orientation

- Suppose that I defined two key positions of a rigid body, and that I want to compute the equal steps between the two positions to compute the animation (each key position been defined by a Rotation-translation pair)
- For the translation part, it seems to be easy to interpolate between the positions.... but the rotation?

- Direct interpolation does not work, because the resulting interpolation matrices will not be normalized....
- But there ARE alternative methods to do this:
- Fixed angle
- Euler angle
- Axis angle
- Quaternions

Fixed angle representation

- Angles used to rotate around fixed axes
- One can rotate first around one main axis, then the second and then the third
- As long as one keeps always the same order, one should be fine
- But, if you apply consequently those, the second rotation will influence back the first rotation
- This effect is called gimbal lock
- The same problem makes interpolation between key positions a problem sometimes
- The resulting rotations will make the object swing out of the desired rotating plane

Euler angle representation

- Here the axes of rotation are on the local coordinate system of the object
- Also here, the order of the rotations is indifferent
- In fact, this method is very similar to fixed axes, and has same advantages and disadvantages
- Euler's rotation theorem: any orientation can be derived from another by ONE rotation around a particular axis

Quaternions

- This is the better approach to do interpolation of intermediate orientations when the object has 3 DOF
- A quaternion is a 4-tuple of real numbers $[a, b, c, d]$.
- Equivalently, it is a pair [$s, \underline{v}]$ of a scalar s and a 3D vector \underline{v}.
- More, it can be defined as $w+x i+y j+z k$ (where $i^{2}=j^{2}=$ $k^{2}=-1$ and $i j=k=-j i$ with real w, $x, y, z)$
- On quaternions one defines two operations:
- Addition:

$$
\begin{array}{r}
{\left[s_{1}, \underline{v}_{1}\right]+\left[s_{2}, \underline{v}_{2}\right]=} \\
{\left[\mathrm{s}_{1}+\mathrm{s}_{2}, \underline{v}_{1}+\underline{v}_{2}\right]}
\end{array}
$$

- Multiplication:

$$
\begin{aligned}
& {\left[\mathrm{s}_{1}, \underline{v}_{1}\right] \cdot\left[\mathrm{s}_{2}, \underline{v}_{2}\right]=} \\
& \quad\left[\mathrm{s}_{1} \cdot \mathrm{~s}_{2}-\underline{v}_{1} \cdot \underline{v}_{2},\right. \\
& \left.\mathrm{s}_{1} \cdot \underline{v}_{2}+\mathrm{s}_{2} \cdot \underline{v}_{1}+\underline{v}_{1} \times \underline{v}_{2}\right]
\end{aligned}
$$

- Note that multiplication is associative, but NOT commutative $\Rightarrow q_{1} q_{2}{ }^{1} q_{2} q_{1}$

Quaternions: definitions

- Units:
- Additive: [0,0]
- Multiplicative: [1,0]=[1,0,0,0]
- Let $\underline{v}=[x, y, z]$.

Inverse:

- $q^{-1}=[\mathrm{s}, \underline{\mathrm{v}}]^{-1}=(1 /\|q\|)^{2} \cdot[\mathrm{~s},-\underline{\mathrm{v}}]$, where

$$
\|q\|=\left(s^{2}+\|\underline{v}\|\right)^{1 / 2}
$$

- Obviously, $q q^{-1}=[1,0,0,0]$
- A point in 3D space can be also represented as the quaternion [0.v].
- or, alternatively, a vector from the origin
- Property:

$$
\begin{aligned}
& {\left[0, \underline{v}_{1}\right] \cdot\left[0, \underline{v}_{2}\right]=} \\
& {\left[0, \underline{v}_{1} \times \underline{v}_{2}\right] \text { iff } \underline{v}_{1} \times \underline{v}_{2}=0}
\end{aligned}
$$

- Def: Unit-length quaternion is a quaternion q such that $\|q\|=1$.
- Obviously $\forall q, q /\|q\|$ is a unit length quaternion

Rotating vectors through quaternions

- Consider a vector [$0, v$], and consider a quaternion q :
- The rotated vector v^{\prime} of v through the quaternion q is the vector

$$
v^{\prime}=\operatorname{Rot}_{q}(v)=q \cdot v \cdot q^{-1}
$$

- A sequence of rotations can be chained:

$$
\begin{aligned}
& \operatorname{Rot}_{p}\left(\operatorname{Rot}_{q}(v)\right)=q\left(p \cdot v \cdot p^{-1}\right) \cdot q^{-1} \\
& =(q \cdot p) \cdot v \cdot\left(p^{-1} \cdot q\right)^{-1}=\operatorname{Rot}_{p q}(v)
\end{aligned}
$$

- Note that:

$$
\operatorname{Rot}^{-1}(\operatorname{Rot}(v))=v
$$

Camera paths

- Like in real movies, in Computer Animation cameras are allowed to move
- This create a number of problems and issues which have been addressed with time
- How do I define movement of a camera?

Following a path

- Animating an object to move along a path is quite natural and common
- Not only following the path is needed: also moving the orientation
- Typically, one would have a local coordinate system associated with the object
- Let the coordinates be (u,v,w), and suppose they are right handed
- Suppose the origin of the coordinate system follows the curve $\mathrm{P}(\mathrm{s})$, and that the movement of $P(s)$ is specified
- Call POS the current position
- One can view the u, v, w coordinates as a view vector, an up vector and a vector perpendicular to u and v
- This is similar to camera definition in Computer Graphics

Following a path: Frenet Frame

- The orientation of the camera system can be made dependent from the properties of the curve P(s)
- A Frenet frame is given by the following axes definitions
- w follows the tangent of the curve (its first derivative $\mathrm{P}^{\prime}(\mathrm{s})$)
- v is orthogonal to w and in the direction of the second order derivative ($\mathrm{P}^{\prime \prime}(\mathrm{s})$)
- u is the cross product of w and v
- In symbols:
$\mathrm{w}=\mathrm{P}^{\prime}(\mathrm{s})$
$\mathrm{u}=\left(\mathrm{P}^{\prime}(\mathrm{s}) \times \mathrm{P}^{\prime \prime}(\mathrm{s})\right.$
$\mathrm{v}=\mathrm{w} \times \mathrm{u}$

Following a path: Frenet Frame

- Frenet frames are quite nice, but bear some flaws
- When the curve has no curvature, its second order derivative is zero. Here the Frenet frame is undefined
- This problem can be solved by interpolating the Frenet frames at the start and end of the rectilineal trait
- Since the tangent vector must
 be the same at the extremities, it is only a rotation that has to be interpolated

Following a path: Frenet Frame

- A more complicated problem occurs at discontinuities in the curvature vector
- For example, when the path follows first a circle, and then a second circle
- At the problem point, the curvature will switch to pointing from one circle center to the other one
- Here, the Frenet frame is defined everywhere but is discontinuous

- Here, the object will rotate wildly along the path with „instant switches"

Following a path: Frenet Frame

- The worst problem is that the path following is not so natural:
- when we view at something, we we do not look along the tangent
- When we move, we anticipate curves
- Similar effect to your car light not following the road
- Also, one might want to make the object bend towards the interior to „anticipate the force"
- or, opposite, to let it bend out to give the effect of a force acting on the object

Camera path following: Center of Interest

- A more natural way of specifying the orientation of a camera is to use the center of interest (COI)
- One can view towards a fixed point
- Or alternatively the center of an object
- Good method for a camera circling some arena of action
- The center of interest is specified, and so the view vector w=COI-POS
- This leaves one degree of freedom in camera specification
- One simple way is to set the view vector v as viewing „up", i.e. perpendicular to w and lying in the wy plane

$$
\begin{aligned}
& \mathrm{w}=\mathrm{COI}-\mathrm{POS} \\
& \mathrm{u}=\mathrm{w} \times \mathrm{y} \\
& \mathrm{v}=\mathrm{u} \times \mathrm{w}
\end{aligned}
$$

- This works quite well for a camera moving along a path and focussing to a single object.
- When it gets very close to the object, this results in drastic changes (fly-near effect)
- This is not always bad!!!

Camera path following: Center of Interest

- There are variations to specifying a fixed point
- One can for example specify various points on the camera path itself
- The up vector
- is usually specified as lying in the wy plane
- But one can also allow the user to input
- Either a tilting value with respect to the default up vector
- Or the up vector on a whole
- Following a points on the path is relatively easy:
- If $\mathrm{P}(\mathrm{s})$ describes the position on the curve, then $\mathrm{P}(\mathrm{s}+\delta \mathrm{s})$, with $\delta \mathrm{s}$ >0, specifies its position in the future
- It is advisable to choose points at equidistances on the curve, so as to make changes not that noticeable
- Alternatively, one can take the baricenter of some future points to avoid too much hopping
- The real flaw of this method is the fact that camera views look jerky

Camera path following: Center of Interest

- A better method is to use instead of some function of the position path, a different function altogether for the POI
- Let $P(s)$ be the curve of the camera path, and $\mathrm{C}(\mathrm{s})$ the curve of the COI (obviously the animator specifies this)
- Similarly, and up vector path must be specified $U(s)$, so that the general up direction is $U(s)$ P(s)
- The resulting coordinates for the camera will then become

$$
\begin{aligned}
& \mathrm{w}=\mathrm{C}(\mathrm{~s})-\mathrm{P}(\mathrm{~s}) \\
& \mathrm{u}=\mathrm{w} \times(\mathrm{U}(\mathrm{~s})-\mathrm{P}(\mathrm{~s})) \\
& \mathrm{v}=\mathrm{u} \times \mathrm{w}
\end{aligned}
$$

- This gives maximum control, but is also difficult to control.
- An easy way of specifying C(s) is to use fixed positions, with ease-in/ease-out moves between the different fixed points

Path along a surface

- If an object needs to follow a surface when it moves, then a path on the surface itself has to be found
- If we know start and endpoints, then this is simple:
- trace a plane „perpendicular" to the surface
- Compute the intersection planesurface
- Alternatively, other methods can be used, for example if one wants to follow the „valleys" on the surface
- Here „greedy" methods can be used, or methods that compute the normal to the surface and follow it

Keyframe Interpolation

- Objects and topic events are usually set by the animators: these are called keyframes
- The computer interpolates between the keyframes to compute the whole movement along time
- Interpolation is done onto any parameter, like:
- object positions,
- Control points of curves
- Colour
- Normals
- Intepolation is either linear or higher order
- Interpolation is easy if the defining parameters are the same number

Hierarchical models: articulated figures

- Hierarchical modeling is placing constraints on objects organized in a tree like structure
- Examples can be:
- A planet system
- A robot arm
- The latter is quite common in graphics: it is constituted by objects connected end to end to form a multibody jointed chain
- These are called articulated figures
- They stem from robotics
- Robotics literature speaks with a different terminology:
- Manipulator: the sequence of objects connected by joints
- Links: the rigid objects making the chain
- Effector: the free end of the chain
- Frame: local coordinate system associated to each link

Hierarchical Modeling

- In graphics, most of the links are revolute joints: here one link rotates around a fixed point of the other link
- The other interesting joint for graphics is the prismatic joint, where one link translates relative to the other
- Joints restrain the degree of freedom (DOF) of the links
- Joints with more than one degree of freedom are called complex
- Typically, when a joint has $n>1$ DOF it is modeled as a set of n one degree of freedom joints

Hierarchical Modeling

- Humans and animals can be modeled as hierarchical linkages
- These are represented as a tree structure of nodes connected by arcs
- The highest node of this structure is called the root node, and is the node that has position WRT the global coordinate system
- All other nodes have their position only as relative to the root node
- A node that has no child is called a leaf node
- Each node contains the info necessary to define the position of the corresponding part
- Two types of transformations are associated with an arc leading to a node:
- Rotation and translation of the object to its position of attachment to the father link
- Information responsible for the joint articulation

Hierarchical Modeling

- How does this work?
- The idea is simple, store at each node
- Info on the node geometry
- The transformation (its rotation) with respect to the father node in the tree
- To obtain the position of the i-th node in the chain, one has to simply multiply the transformations to obtain the position of the current arc to be displayed
- The root node of course contains info of its absolute position and orientation in the global coord. system
T_{0} : transformation to
rotate K_{0} in WCS
T_{1} : transformation to rotate K_{1} WRT K ${ }_{0}$ $=$ rotation by θ_{1}
T_{2} : transformation to rotate K_{2} WRT K ${ }_{1}$ $=$ rotation by θ_{2}
- To obtain the position of K_{2} in WCS, one will then have to multiply $\mathrm{T}_{0} \mathrm{~T}_{1} \mathrm{~T}_{2}$

Forward Kinematics

- Traversing the tree of the nodes produces the correct picture of the object
- Traversal is done depth first until a leaf is met
- Once the corresponding arc is evaluated, the tree is backtracked up until the first unexplored node is met
- This is repeated until there are no nodes left inexplored

- A stack of transforms is kept
- When tree is traversed downwards, the corresponding transformation is added to the stack
- Moving up pops the transformation from the stack
- Current node position is generated through multiplying the current stack transforms

Forward Kinematics

- To animate the whole, the rotation parameters are manipulated and the corresponding transforms are actualized
- A complete set of rotations on the whole arcs is called a pose
- A pose is obviously a vector of rotations

Inverse Kinematics

- Instead of specifying the whole links, the animator might want to specify the end position of the effector (inverse kinematics)
- The computer computes then the position of the other links and their mutual angles

- One can have zero, one or multiple solutions
- No solution: overconstrained problem
- Multiple solutions: underconstrained problem
- Reachable workspace: volume that end effector can reach
- Dextrous workspace: volume that end effector can reach in any orientation
- Computing the solution to the problem can at times be tricky

Inverse Kinematics

- If the mechanism is simple enough, then the solution can be computed analytically
- Given an initial and a final pose vector, the solution can be computed by interpolating the values of the pose vector
- Consider the figure: the $2^{\text {nd }}$ arm rotates aroound the end of the $1^{\text {st }}$ arm.
- It is clear that all positions between $\left|L_{1}-L_{2}\right|$ and $\left|L_{1}+L_{2}\right|$ can be reached by the arm.
- Set the origin like in the drawing
- In inverse kinematics, the user gives the (X, Y) position of the end effector
- Obviously there are only solutions if

$$
\left|\mathrm{L}_{1}-\mathrm{L}_{2}\right| \leq \sqrt{\mathrm{X}^{2}+\mathrm{Y}^{2}} \leq\left|\mathrm{L}_{1}+\mathrm{L}_{2}\right|
$$

Inverse Kinematics

- $\cos \theta_{\mathrm{T}}=\mathrm{X} /\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}$
$\Rightarrow \theta_{\mathrm{T}}=\operatorname{acos}\left(\mathrm{X} /\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}\right)$
- Because of the cosine rule we have also that

$$
\begin{aligned}
& \cos \left(\theta_{1}-\theta_{T}\right)= \\
& \left(\mathrm{L}_{1}^{2}+\mathrm{X}^{2}+\mathrm{Y}^{2}-\mathrm{L}_{2}^{2}\right) / 2 \mathrm{~L}_{1} \sqrt{ } \mathrm{X}^{2}+\mathrm{Y}^{2} \\
& \text { and } \\
& \cos \left(\pi-\theta_{2}\right)= \\
& \left(\mathrm{L}_{1}^{2}+\mathrm{L}_{2}^{2}-\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}\right) / 2 \mathrm{~L}_{1} \mathrm{~L}_{2}
\end{aligned}
$$

from which we have

$$
\begin{gathered}
\theta_{1}=\operatorname{acos}\left(\left(\mathrm{L}_{1}^{2}+\mathrm{X}^{2}+\mathrm{Y}^{2}-\mathrm{L}_{2}^{2}\right)\right. \\
\\
/ 2 \mathrm{~L}_{1}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)^{1 / 2}+\theta_{\mathrm{T}}
\end{gathered}
$$

and
$\theta_{2}=\operatorname{acos}\left(\left(\mathrm{L}_{1}{ }^{2}+\mathrm{L}_{2}{ }^{2}-\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)\right) / 2 \mathrm{~L}_{1} \mathrm{~L}_{2}\right)$

- Note that two solutions are possible, simmetric with respect to the line joining the origin and (X, Y)

Inverse Kinematics

- In general, for the quite simple armatures used in robotics it is possible to implement such analytic solutions
- Unfortunately this works only for simple cases
- For more complicated armatures, the number of possible solutions there may be infinite solutions for a given effector location, and computations become so difficult to do that iterative numeric solution must be used

Jacobians

- Suppose you have
- six independent variables and
- six unknowns that are functions of these variables

$$
\begin{gathered}
y_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{3}=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{4}=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{5}=f_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
y_{6}=f_{6}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
\underline{Y}=F(\underline{X}) \\
\text { (X) }
\end{gathered}
$$

- When the solution is not analytically computable, incremental methods converging to the solution are used
- To do this, the matrix of the partial derivatives has to be computed
- This is called the Jacobian

$$
J=\left|\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right|
$$

- The Jacobian can be seen as a mapping of the velocities of \underline{X} to velocities of \underline{Y}.
- In other words, how changes of the X variables map into effector changes.

Using Jacobians

- The Jacobian matrix is a linear function of the x_{i} variables
- When time moves on to the next instant, X has changed and so has the Jacobian
- The desired change will be based on the difference between the current position/orientation to the desired goal configuration
- If one can invert this equation, we can compute from the Y positions the necessary X positions
- Of course the math is not easy
- Finding the real solution will involve writing the Taylor series of the original equations, which is beyond the scope of this course.

Motion tracking

- Making synthetic movement of „real characters" is complicated.
- Recently, devices appeared that are capable of capturing real movement and applying it to virtual characters.
- This is called motion capture:
- The idea is to use either sensor positioning, or capture images and identify the marker positions
- Real humans/animals are therefore equipped with sensors (or markers) applied to the different body parts
- The xyz positions of these markers in time are recorded while the „actor" is performing movement
- More recent equipment (e.g. Kinect) do this without markers (using IR+SW)

Motion tracking

- There are basically two ways of doing motion tracking:
- Electromagnetic sensors:
- uses sensors positioned at the joints that transmit their position and orientation
- Transmission is done either by cable (= limit freedom of movement) or by wireless
- De facto real time
- Main problem: room must be free of field distortions
- Limited range, accuracy problems
- High purchase cost

Motion tracking: optical

- Optical tracking:
- Uses video cams to record motion of the subject
- Easier to wear (reflective markers are applied to subject)
- Wider range
- No cables
- Real time difficult
- Data is noisy and error prone
- Because orientation is not directly generated, more markers are required than with magnetic trackers
- Cameras may vary in quality and principle:
- Infrared
- Very high resolution
- But also available for consumer videocams => cheap!
- In the next, we will take a look at how optical tracking works

Motion tracking: optical

- Objective is to reconstruct the three-dimensional model of a motion and apply it to a synthetic model
- Work can be subdivided in 3 tasks:
- Image processing: Images need to be processed so as to be able to locate, identify and correlate the markers
- Camera calibration: 3D locations of markers have to be extracted from the 2D images
- Constraint satisfaction: The 3D marker locations have to be constrained to the physical model whose motion is being captured

Optical tracking: Image Processing

- Optical markers can be of different shapes: pingpong balls, other markers...
- Stuck to the joints with velcro/tape
- One of the problem is that they stick out of the body, so there is a difference between where they are and where the real joints are
- Moreover, they can moveWRT the real joint too
- Once video digitized, it can be analyzed
- If background static, it can be subtracted
- Once this is done, the marker gets searched for
- Of course, with more markers it is more complicated, because they may get occluded
- Therefore one has to track the markers across the frames

Optical tracking: Image Processing

- Tracking trackers across the frames is also difficult
- One can use frame coherence, which works as long as the subject moves slowly enough
- One can also use logical coherence, i.e. when walking feet are always at the floor
- One can use also prediction methods: if I know how fast the subject is, I can try to "guess" the whereabouts of the marker in the next frame
- Occlusion is a further problem: if more markers disappear, it is difficult to know which is which when they reappear
- Also, when markers pass near each other, they might be swapped next frame
- This might generate markers swapping positions
- Sometimes, this can be solved by taking a 3D image (with 2 cameras).
- Other times, human intervention is necessary

Optical tracking: Camera Calibration

- Before the 3D position of a marker can be reconstructed, one needs to know
- location and orientation of the cameras in world coords
- Focal length, image center and aspect ratio have to be known
- The camera system is modelled like in Computer Graphics
- The image of a point is done by projecting a ray from the point to the center of projection
- Calibration is done by recording a number of known points in
 space

Optical tracking: Position reconstruction

- At least two views are needed to reconstruct 3D
- Since we know I1 and I2, we deduce

$$
\begin{aligned}
& \mathrm{P}=\mathrm{C} 1+\mathrm{k} 1(I 1-\mathrm{C} 1) \\
& \mathrm{P}=\mathrm{C} 2+\mathrm{k} 2(\mathrm{I}-\mathrm{C} 2),
\end{aligned}
$$

thus
C1+k1(I1-C1)= C2+k2(I2-C2) which are 3 equations in 2 variables, and this solvable

- Unfortunately, noise complicates it, because the two straight lines do not necessarily touch
- This can be solved by finding P_{1} and $P_{2} \perp$ to the lines through the other cameras, and computing the midpoint of the segment $\mathrm{P}_{1} \mathrm{P}_{2}$

Optical tracking: Position reconstruction

- As few as 14 markers can provide some simple tracking of a human figure
- Complete marking sets include 31 markers, including elbow, kneews, chest, hands, toes, ankles, and spine, as well as scapulae and more...
- The more markers one has, the more it is necessary to have more than 2 cameras, so as not to have marker occlusion
- Each marker at each frame needs to be seen by at least two cameras
- A typical system would have 8 cams
- Multiple cams requre some more effort in synchronizing them

Optical tracking: fitting to skeleton

- The next step is to attach the markers to the skeleton
- One could do it directly, but unfortunately it does not work well, because in general, marker distances are not preserved
- Markers are not exactly on the joints, but on the skin
- One can compensate for that by setting markers at their right positions, but it is still imprecise because the body is elastic
- Another solution is to put two markers on the sides of the joint
- This works well (but doubles complexity), but not for joints which are inaccessible
- Simple geometric calculations lead to deduce the correct jointmarker mutual positions
- Once this is known, the movement can be applied to the skeleton
- Watch out for imprecisions of the data obtained, that can lead to visible artifacts (avoid floor penetration)

Conclusion

- There are loads of other research themes connected with Computer Animation
- This set of slides was simply an appetizer, like these

- In the Masters course, I give a complete Computer Animation lesson in the Summer Term

End

```
+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++
```

