
Computer Graphics: 
8-Hidden Surface Removal

Prof. Dr. Charles A. Wüthrich, 

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de



Depth information

• Depth information is an 
important clue to our 
visual system

• It allows us to discern 
which objects are in 
front, an which ones are 
behind

• The challenge is to know 
which are the closest 
objects to the viewer

• Basically, it is a 2-
dimensional sorting 
problem!



Introduction on hidden surface removal

• Problem: which 
elements in a picture 
are not hidden by 
other ones?

• Two main classes of 
algorithms
– Object precision: 

based on objects

for each object DO
  compute non-hidden 
    parts
  draw them on screen
END

– Image precision: 
based on pixels

for each pixel DO
  search object closest
    to screen
  draw corresp. colour

  end

– Trivial algorithm: 
compare all polygons 
with each other



Back face culling

• Of all the faces of an 
object, only the ones 
facing the viewer need 
to be rendered to the 
screen

• This reduces the number 
of polygons to be 
rendered by ca. one half

• The test to perform is 
easy if the normals to 
the polygon are 
available

• The scalar product VxN 
must be negative

• Note that the test  can be 
easily done by computing 
the z coordinate of N in 
screen coordinate space

• Even easier, looking if 
the polygon vertices lies 
clockwise produces the 
same result

NV



HSR: Painter‘s algorithm

• Ever saw a painter 
compose a picture?
– He starts painting the 

background
– And procedes to the 

foremost

• This is how the 
painter algorithm 
works: 
– Sort polygons by 

decreasing zmax

– Draw polygons from 
maximum z to 
minimum z



HSR: Painter‘s algorithm

• Ever saw a painter 
compose a picture?
– He starts painting the 

background
– And procedes to the 

foremost

• This is how the painter 
algorithm works: 
– Sort polygons by 

decreasing zmax

– Draw polygons from 
maximum z to minimum 
z

• Unfortunately, there are 
cases when the 
algorithm does not work



HSR: Painter‘s algorithm

• And which cases are 
they?
– Here P2 partially 

covers P1, but since 
zmax in P2 is bigger 
than the one on P1, P1 
gets drawn over P2

• The Painter 
algorithm can be 
modified to work in 
all cases

P2P1

z

x



HSR: Painter‘s algorithm

• Problems occur when their z 
domains overlap

• One can store zmax and zmin for 
each polygon and then 
compare

• If they overlap, then a number 
of cases allow to draw P1

1. x axis proj. do not overlap
2. y axis proj. do not overlap
3. xy plane projection does not 

overlap (use bounding 
rectangles to overlap)

4. P1 lies on opposite side of P2 
plane WRT viewpoint (replace 
pt. + VP coords. in plane eq.) 

5. P2 lies on same side of P1 
plane WRT viewpoint

If one of these occurs, then 
polygon P1 & P2 can be drawn

P2P1

z

x

P2

P1z

x

1

P2

P1z

x
4 P2

P1z

x

5



HSR: Painter‘s algorithm

• If none of the cases is true, 
then P1 and P2 are swapped 
and tests 4 and 5 are 
repeated
– In this case P1 is drawn in 

front of  P2

• There are still some 
ambiguous cases 
remaining:
– If polygons partially 

overlap, then one of them 
must be split by using the 
plane of the other one

– Cyclic overlappings, these 
generate infinite loops.
Solution here is to 
remember when a cycle is 
done and split
(by marking polygons)

P2P1

z

x

P2

P1

z

x
P3



Z-Buffering (1)

• Z-buffering is easy to combine with the Scanline 
Algorithm

• Image Space Algorithm
• Idea: For every pixel on the screen, an additional 

variable is saved containing the depth value at that 
pixel

• The buffer of the additional variables is called the Z-
buffer

• Whenever a polygon has to be drawn, the depth value 
of the pixel on the polygon is tested against the content 
of the Z-buffer to see if the new pixel must be drawn or 
not 

5

3

z



Z-Buffering (2)

• Algorithm:
– Write + in every position 

of the Z-buffer (max. 
distance from the screen)

– Compute for each pixel 
that is being scan-
converted its depth at the 
z axis.

– If z < zbuf draw pixel and 
update the Z-buffer with 
the depth value of the 
pixel.

• Note that the same 
algorithm works also for 
any kind of surfaces, as 
long as the z value of the 
surface is computable

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

z=1

z=5

z=5

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

z=5

z=5z=1

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞
∞

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞
∞

5
4 5

3 4 5
2 3 4 5

1 2 3 4 5

z=0z=9

z=9

9
9 6 3
9

0

∞ ∞ ∞ ∞
∞
∞
∞

5
4 5

3
2 3 4 5

1 2 3 4 5

9
9 3 0

6

6

z=9

z=9

z=0



Z-Buffering (3)

• But how do I compute the Z-values of the 
polygon?
– The computation can be done on the fly, while 

proceeding in the scanline algorithm
– Remember the plane equation of a polygon:

Ax+By+Cz+D=0

⇒ z=
−D−Ax−By

C



Z-Buffering (4)

• The scanline algorithm draws horizontally lines 
(x, x+1, ...)

• Suppose you know the z value of the polygon at the 
point (x,y)

                         z1=P(x,y)

Then you have that by moving to the right with an 
increment of x along the x-axis one obtains 
                       

                    P(x+x,y)= z1-(A/C) x

Since the increment is exatly one on the x axis we 
obtain

                      P(x+1,y)= z1-(A/C)
• This is the increment that has to be added for passing 

from one pixel to the next to its right



Z-Buffering (5)

• Similarly the increment for computing z while passing from the 
scanline y to the next scanline can be derived:

                            z1=P(x,y)

By moving downwards with an increment of y along the y-
axis one obtains 
                       

                    P(x,y+y)= z1-(B/C) y

Since the increment is exatly one on the y axis we obtain

                      P(x,y+1)= z1-(B/C)
• This is the increment that has to be added for passing from 

one scanline to the next one vertically
• Obviously, one has to backtrack the scanline until the left 

edge of the polygon is reached



Z-Buffering (6)

• Algorithmus:
Initialize Z-Buffer with  

For all Polygons P

For each Pixel in P (obtained by scan conversion)

Compute Zpoly = P(x,y)

Zbuffer = read_z_buffer(x,y)

if Zpoly < Zbuffer

Draw_Pixel_to_Framebuffer(x,y,color)

Set_Z_Buffer(x,y,Zpoly)

end if
end for

end for



Z-Buffering (7)

• Here a scene 
rendered with z-
buffering

• In the lower pictures, 
the z-buffer values 
are rendere
– white=far
– black=near



Area Subdivision - Warnock (1)

• A second class of algorithms 
uses space partitioning to 
reduce the complexity

• Such algorithms use a divide 
and conquer strategy to 
solve the problem 

• The underlying idea is 
simple:
– Subdivide the projection 

plane in smaller regions
– Polygons are sorted to their 

relevant region
– The problem is recursively 

subdivided until a simple 
solution can be found 

– The smaller the subdivison 
region, the less polygons 
have to be handled, and the 
easier the decision to be 
made

• Given a polygon, and a 
region, four cases are 
possible:



Area Subdivision – Warnock (2)

(a) Covering (b) Intersecting

(d) Outside(c) Inside

Given a region R, and a polygon P, 4 cases are possible:



Area Subdivision – Warnock (3) 

Given a region R, four cases are possible:
1. all polygons lie outside R

 Draw R with the backgound colour
2. Only one polygon intersects or is inside R

 Draw first background color, then draw the polygon
3. A single polygon covers completely R

 Draw R in the colour of the polygon
4. More than one polygon intersects R, but one of these 

polygons covers the whole regions and is in front
 Draw R in the colour of the surrounding polygon



Area Subdivision – Warnock (4)

• How do I test the last condition? 
– Compute all z coordinates of the planes of the relevant 

polygons for the region R at the corner points of the 
region 

– If one of the polygon has all z values at the corners in 
front of the other polygongs relevant to the region, 
then draw this polygon

• If none of these case occur, then subdivide region further
• Until when?

– Until the region R is as big as a pixel
– In this case the colour of the pixel will be set to the colour of 

the polygon that is in front at the middle point of the pixel (by 
evaluating z at the centre of the pixel for each polygon)

– Alternatively, one can subdivide at sub-pixel level and do a 
mean of the values found at subpixel level



Binary Space Partition trees (1)

• BSP trees are efficient 
algorithms in the case of a 
moving viewpoint in a static 
environment
– For ex. computer games like 

flight simulators 

• The idea: the polygon 
planes are used to 
subdivide the region into 
two subspaces
– one corresponding to the 

front
– one to the back of the 

polygon 

• Subspaces are recursively 
subdivided until they 
contain only one polygon

• This achives a binary tree 
with single polygons as 
leaves, and mid nodes 
splitting planes 

• Given a viewpoint V, correct 
polygon painting can be done 
by traversing the tree in an 
in-order fashion, and drawing 
polygons as encountered.

• This corresponds to 
implementing that a polygon 
will be scan-converted 
correctly if
– all polygons on the other 

side of it from the viewer are 
scan converted

– then the polygon itself
– then the ones on the side of 

the viewer



How to build the BSP tree

• Choose one polygon, 
consider its plane and sort 
remaining polygons in
– back polygons
– front polygons

• Decide by substituting in 
equation

• If a polygon belongs to 
both, split it into 2 
subpolygons

• Redo the splitting on the 
subspaces obtained

• Continue splitting till each 
subdivision has only one 
element

• First we pick one arbitrary 
polygon, e.g. 3

2

1

3

4

5

3

1
2
5a

4
5b

5a

5b

front back



How to build the BSP tree

• repeat process until one 
polygon only in subspace

2

1

3

4

5 3

4
5b

5a

5b

front back

2

15a

bf

2

1

3

4

5 3
5a

5b

front back

2

15a

bf
4

5b

b



How to render from the BSP tree

• Given tree and viewpoint V, it 
suffices to render the 
polygons in the correct order
– If V is in front space of  root 

polygon
• display first rear polygons
• display root polygon
• display front polygons

do it recursively for all 
subspaces till leaves are 
reached

– If V in rear space, display in 
the order front, root, rear

– If poly is seen on edge, then 
either order will be okay

– Note that V coords. can be 
substituted in plane eq to  
decide the front rear 
question

– This decision has to be taken 
at EACH node!!!!

2

1

3

4

5
5a

5b

2

1

3

6

5

4

Viewpoint

V

3
front back

2

15a

bf
4

5b

b



How to render from the BSP tree

2

1

3

4

5
5a

5b

1
2

3 4

6

5

ViewpointV

Front: rear, root, front

Rear:: front, root, rear

3
front back

2

15a

bf
4

5b

b



How to render from the BSP tree

• The advantage of this method is that the tree is 
traversed in linear time

• Once tree is built, it is easy to do visibility from a new 
point

• Tree needs no recomputing
• Algo can be modified to deal with non static scenes
• Backface culling can be done during rendering time, so 

that it is done on the fly 
(front-rear test is al I need to decide backfaces) 



Some speed considerations

Relative Performance
Polygons in the scene

Algo 100 2500 60000

Painter 1 10 507

Z-Buffer* 54 54 54

Warnock 11 64 307

nach Foley, van Dam, Table 15.3, S. 716 Z-Buffer - Abschätzung ist konstant, weil die Erhöhung der 
Polygonanzahl in der Regel dazu führt das die mittl. 
Polygongröße kleiner wird. Das Produkt aus Polygonanzahl 
und Pixel je Polygon bleibt somit konstant.



End considerations

• Depth Sort: efficient for few polygons
• Z-Buffer: constant performance, but needs 

additional buffer
• Warnock: efficient for many polygons
• BSP trees, convenient when viewpoint moves 

and not the scene



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End


	Computer Graphics: 8-Hidden Surface Removal
	Depth information
	Introduction on hidden surface removal
	Back face culling
	HSR: Painter‘s algorithm
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Z-Buffering (1)
	Z-Buffering (2)
	Z-Buffering (3)
	Z-Buffering (4)
	Z-Buffering (5)
	Z-Buffering (6)
	Z-Buffering (7)
	Area Subdivision - Warnock (1)
	Area Subdivision – Warnock (2)
	Area Subdivision – Warnock (3)
	Area Subdivision – Warnock (4)
	Binary Space Partition trees (1)
	How to build the BSP tree
	Slide 23
	How to render from the BSP tree
	Slide 25
	Slide 26
	Some speed considerations
	End considerations
	PowerPoint Presentation

