
Advanced Techniques

Francesco Andreussi

Bauhaus–Universität Weimar

6 February 2020

F. Andreussi (BUW) Advanced Techniques 6 February 2020 1 / 10



Particle Systems

Particle Systems are huge sets of simple
objects (points, camera facing quads, etc.)
with similar randomised behaviour.

Every particle is spawned, has a life, dies and
is re-spawned. During their lifetime, the
attributes of the particles are updated. The
usual attributes for a particle are position,
velocity, color, remaining lifetime.

Particle Systems are efficient and effective
for rendering amorphous objects (e.g. fire,
smoke, snow/rain) and complex phenomena
(e.g. explosions).

Tutorial1 Tutorial2

F. Andreussi (BUW) Advanced Techniques 6 February 2020 2 / 10

http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
https://learnopengl.com/In-Practice/2D-Game/Particles


Visualisation (on globe)

It is possible to visualise geographically mapped data with OpenGL, using
Geometry Shadersand Transformation Feedback.

Getting data from text or from a displacement map, i.e. a texture which
can be used as source for calculating displacement for points generated by
a Geometry Shader.

These data are updated every frame, allowing real-time modifications, and
the Geometry Shader results have to stored in a buffer using the
Transformation Feedback.

Geometry Shader Tutorial1 Tutorial2 Tutorial3
Transformation Feedback Tutorial
Earth Data Source

F. Andreussi (BUW) Advanced Techniques 6 February 2020 3 / 10

http://learnopengl.com/#!Advanced-OpenGL/Geometry-Shader
http://www.lighthouse3d.com/tutorials/glsl-tutorial/geometry-shader/
https://open.gl/geometry
https://open.gl/feedback
https://developers.google.com/earth-engine/datasets/


Text Rendering

There is no direct way of displaying text in OpenGL. The easier way of
dealing with text is probably loading 2D or 3D letter models and arrange
them in the virtual environment, but it is not a good way of doing it.

What it is actually done, is to render the characters as textures on some
quads and there are two ways of doing it:

• Bitmap fonts: character are stored in one texture, the quads are
calculated and the glyphs are retrieved manually.

• TrueType fonts: importing the fonts, the library automatically and
dynamically computes the bitmaps and the quad sizes.

Bitmap Fonts Tutorial1 Tutorial2
TrueType Fonts Tutorial1 Tutorial2

F. Andreussi (BUW) Advanced Techniques 6 February 2020 4 / 10

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-11-2d-text/
http://lazyfoo.net/tutorials/OpenGL/20_bitmap_fonts/index.php
http://learnopengl.com/#!In-Practice/Text-Rendering
http://www.mbsoftworks.sk/index.php?page=tutorials&series=1&tutorial=12


Shadow Mapping

Shadow mapping requires an offscreen rendering step for each light
involved. In fact, the scene has to be rendered from the point of view of
the light, using the same shaders for every object and obtaining a depth
texture.

Then, the scene is rendered normally, but, in the fragment shader, it is
checked whether the fragment is deeper (in light’s projection space) w.r.t.
the value stored in the depth texture. If this condition is true, the
fragment does not receive light from that surface.
Shadow Mapping Tutorial1 Tutorial2 Tutorial3 Tutorial4 Tutorial5

F. Andreussi (BUW) Advanced Techniques 6 February 2020 5 / 10

http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://fabiensanglard.net/shadowmapping/index.php
http://sunandblackcat.com/tipFullView.php?l=eng&topicid=34&topic=Shadow-Mapping
http://ogldev.atspace.co.uk/www/tutorial23/tutorial23.html


Deferred Shading (1)

Interesting application of the offscreen rendering concept, it break down
the rendering in two steps: getting all the geometrical information and
using it to actually render.

The first pass renders the scene to the G–Buffer, where fragment
positions, colours, normals and specular values are stored. The second step
takes the textures stored in the G–Buffer and uses the data to compute
the final appearance of the scene.

Deferred Shading improves performances computing the lighting only for
visible pixels and makes the rendering of multiple lights more efficient.
Nevertheless, it makes hard using transparencies and Anti–Aliasing.

Tutorial1 Tutorial2 Tutorial3 Tutorial4

F. Andreussi (BUW) Advanced Techniques 6 February 2020 6 / 10

http://learnopengl.com/#!Advanced-Lighting/Deferred-Shading
http://gamedevs.org/uploads/deferred-shading-tutorial.pdf
http://www.dennisfx.com/wp-content/uploads/2013/02/Report_DRendering_Toufexis_D.pdf
http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html


Deferred Shading (2)

F. Andreussi (BUW) Advanced Techniques 6 February 2020 7 / 10



Light Scattering

Volumetric Light Scattering (aka God Rays) are a “special
case” of Deferred Shading.

In fact the scene is computed multiple times: one for
rendering the scene without the light scattering effect, and
one for getting an image with the light source rendered.

The second image is modified applying light scattering
formulas and, eventually, the two textures are blended
together, and the result is displayed on the screen.

Tutorial1 Tutorial2

F. Andreussi (BUW) Advanced Techniques 6 February 2020 8 / 10

https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch13.html
http://fabiensanglard.net/lightScattering/index.php


WebGL Port

WebGL is a slightly reduced version of OpenGL, designed to work on
browsers using HTML5 and JavaScript.

High–level graphics framework (e.g. three.js) are available.

Tutorial1 Tutorial2 Example

F. Andreussi (BUW) Advanced Techniques 6 February 2020 9 / 10

https://developer.mozilla.org/de/docs/Web/API/WebGL_API
http://learningwebgl.com/blog/?page_id=1217
http://kritten.org/cg/


Thanks for the Attention!

F. Andreussi (BUW) Advanced Techniques 6 February 2020 10 / 10


