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Raster devices

• In modern devices the smallest addressable element 
is a point. 

• Each of these dots is called a pixel, or „pel“, for 
picture element.

• Pixels can be represented as being the points of the 
plane having integer coordinates (~Z2)

• Note that this is just a mathematical representation: 
in reality, pixels are often broader than high, and have 
a shape which resemble 
– a 2D gaussian distribution (for CRT screens)

– Small squares (for LCD displays)

– A more or less circular dot (printers)



Rasterization

• Is the operation that 
allows to pass from our 
continuous 
representation of the 
world to the discrete 
world of computers

• It allows drawing lines, 
curves, polygons and 
patches on a 2D 
discrete output device

• How is this done?



Nearest neighbour rasterization

• One has to distinguish 
among two types of 
rasterization:
– Point rasterization:

Given a point P of R2, the 
nearest point P´ of Z2 is its 
rasterization.

– Curve rasterization: nearest 
integer does not work any 
more, since curves are 
continuous

– Rasterization must be based 
on intersection with some 
grid.

– Is there a model that fits 
both methods?

P

P´



Nearest neighbour rasterization

• Sure there is!
• Let D be a compact set of R2, 

ST it is included in the unit 
square (basic domain)

• Let Dz be the translated 
domain of D by the point of 
integer coordinates z=(i,j)

• Let A be a subset of R2

• Def: The rasterization of A is 
the set of all points z such that 
Dz∩A ≠ ∅

• Basically one copies D around 
all points of integer coordinates 
and then takes as rasterization 
the corresponding points

• Different choices of D 
lead to different schemes

Cell rasterization

Grid intersection rasterization



Line rasterization

• Problem: Given the line 
passing through the points 
PI=(xI,yI), PF=(xF,yF), draw its 
rasterization

• Two basic methods for doing 
this:
– Direct algorithms: 

•use global knowledge
•generally slow

– Incremental algorithms:
• require only local 

knowledge
•often highly optimized 



Line rasterization

• Line through PI=(xI,yI), PF=(xF,yF):

• Simplest algorithm:

compute intersections with grid lines x=i, y=j (i,jϵZ)
– Near intersection to next grid point

y=
yF− y I
xF−x I

x+ y I−
yF− y I
xF−x I

xI



Rosenfeld‘s theorem

• There is a theorem that 
halves the number of 
intersection computations 
that have to be made

• Theorem: Let r be the 
straight line y=mx+q. 
Let -1 ≤ m ≤ 1 (slope  

between -45° and 45°). 
All the points of the 
rasterization of r can be 
found by computing the 
intersection with the straight 
lines of the form x=i

• Intersections with y=j do not 
lead to additional points

• Note that a similar theorem can 
be stated for curves and their 
derivatives

• Note that intersections can lead 
to ambiguous rasterization 
points, in case they fall halfway 
between two integer points



DDA algorithm

• Without loss of generality, 
consider q=0

• Let us look at the table of 
the intersections with the 
straight lines x=i

x y

0 q

1 m+q

2 2*m+q

3 3*m+q



DDA algorithm

• Without loss of generality, 
consider q=0

• Let us look at the table of the 
intersections with the straight 
lines x=i

At each step, yi+1=yi+m!!!!

• This gives the idea for a 
new algorithm: we add 
at each step of the 
algorithm 1 to the x and 
m to the y

• The resulting algorithm 
is an incremental 
algorithm, because 
there is no need for the 
general equation

x y

0 q

1 m+q

2 2*m+q

3 3*m+q



DDA algorithm

• Example: y=1/3x+2 
between (0,2) and (6,4)

x y

0 2

1 2,33→2

2 2,66→3

3 3

4 3,33→3

5 3,66→4

6 4

0

dy=yF-yI; dx=xF-xI;

m=dy/dx;

y=yI;

FOR x=xI TO xF

   WritePixel(x,y+0.5);

   y=y+m;

ENDFOR



Integer DDA algorithm

• One can improve the 
algorithm so as to make 
it use integer quantities 
only

• This by using the fact 
that only rational 
numbers are involved in 
a normal environment

• One can therefore 
multiply the equations 
by the maximum 
denominator to get rid of 
the denominators

dx=xF; dy=yF; x=0; y=0;

rest=0;

DrawPixel(x,y);

FOR (i=0; i<=xF; i++)

   x=x+1;

   rest=rest+dy;

   if(rest>dx)

   THEN y=y+1;

      rest=rest-dx;

   ENDIF

   DrawPixel(x,y)

ENDFOR



Bresenham‘s algorithm

• While tracing the line, at 
each step we use a control 
variable to check if we have 
to move to the right or to the 
upper right

• One can use thus a control 
variable to steer whether to 
step upwards or sideways

• Precompute increments and 
the game is done

• Also, mirroring has to be 
done to let the algorithm 
draw all cases, eventually 
through swapping main 
variable

xi xi+1

Pi

d

E

NE



Bresenham‘s algorithm

WritePixel(x,y,value);             
  

   /*first point in line */
   WHILE x<xend DO BEGIN
      x:=x+1;
      IF d<0
         THEN d:=d+incr1;          
            /* increment East */
         ELSE BEGIN       

        /* increment NE */
            y:=y+1;
            d:=d+incr2;
           END
         WritePixel(x,y,value);
      END       /*while*/
   END         /*Bresenham*/

PROCEDURE Bresenham(x1,y1,x2,y2, 
value: integer):

   var dx, dy, incr1, incr2, d, x, 
y, xend: INTEGER;

BEGIN
   dx:=ABS(x2-x1);
   dy:=ABS(y2-y1);
   d:=2*dy-dx;
   incr1:=2*dy;  /* increment E */
   incr2:=2*(dy-dx);  /* increment 

                     
                         NE */
   IF x1>x2
      THEN BEGIN   /* start at

                   point with
                      smaller x */
         x:=x2; y:=y2; xend:=x1;
         END
      ELSE BEGIN
         x:=x1; y:=y1; xend:=x2;
         END



Circle rasterization

• Problem: Given the 
circle x2+y2=r2 draw its 
rasterization

• The most common 
algorithm for drawing 
circles was developed by 
Bresenham

• Consider the second 
octant, from x=0 to 
x=y=r/sqrt(2)

• Let F(x,y)=x2+y2-r2:
F>0 outside the circle
F<0 inside the circle

•



Circle rasterization

• Problem: Given the 
circle x2+y2=r2 draw its 
rasterization

• The most common 
algorithm for drawing 
circles was developed by 
Bresenham

• Consider the second 
octant, from x=0 to 
x=y=r/sqrt(2)

• Let F(x,y)=x2+y2-r2:
F>0 outside the circle
F<0 inside the circle

•

P(xp,yp) E

SE

M ME

MSE

One can show that: 
- if the midpoint between 
E and SE is outside the 
circle, then SE is closer to 
the circle
- Similarly, if the midpoint 
is inside the circle, then E 
is closer to the circle



Circle rasterization

• We choose a decision variable 
d, which is the value of the 
function at the midpoint
dold=F(xp+1,yp-1/2)=
       (xp+1)2+(yp-1/2)2-r2

• If d<0, then E is chosen and 
the increment is
dnew=F(xp+2,yp-1/2)=
 (xp+2)2+(yp-1/2)2-r2

• Thus, dnew=dold+2xp+3, and the 
increment in case of E is 
E=2xp+3.

• If instead d>=0, then SE is 
chosen, and the next midpoint 
will be incremented by
 dnew=F(xp+2,yp-3/2)=
 (xp+2)2+(yp-3/2)2-r2

• Thus, dnew=dold+2xp-2yp+5, and
 SE=2xp+ -2yp+5 

• Here, the two  increments 
vary from step to step

• Otherwise it is similar to line 
drawing

• All it needs now is to compute 
a starting point and we are set 

E

SE

M ME

MSE



Circle rasterization

ELSE
      BEGIN   /* select SE */
         d:=d+2*(x-y)+5;
         x:=x+1; y:=y+1
      END
      WritePixel(x,y,value);
   END         /* While */
END

PROCEDURE 
MidpointCircle(radius,
      value: integer);

   var x, y: INTEGER; d:REAL
BEGIN
   x:=0; y:= radius; 

d:=5/4/radius;
   DrawPixel(x,y,value);
   WHILE y>x DO
   BEGIN
      IF(d<0) THEN
      BEGIN    /* select E */
         d:=d+2*x+3;
         x:=x+1;
      END
          



Circle drawing

• Also this algorithm can be integerized and 
perfectioned

• This by using second order differences
• Note that ellyppses can be drawn in a similar way



Higher order curves

• Suppose we want to rasterize a higher order curve: 
x=f(t) y=g(t) (t [0,1])∈



Higher order curves

• Usually, hardware 
companies would simply 
subdivide the interval 
parameter into equal 
parts (0, 1/n, 2/n …,1)

• Then evaluate the curve 
at these parameter 
values

• Finally plot the polyline 
of the points

• Prone to miss detail of 
the curve



Higher order curves

• A better method is to 
use adaptive steps

• Consider three 
consecutive samples Pi-

1PiPi+1

• If the distance  is 
bigger than a certain 
threshold, then I 
simply half the step

• If it is smaller, then 
I try doubling the step Pi-1

Pi

Pi+1





Polygon Rasterization

• In general, except if we are dealing with wireframes, we 
would want to draw a filled polygon on our screen.

• The advantage is clear: the polygon acquires thickness 
and can be use to render surfaces

• The simplest way one would do that is to draw the polygon 
border and then fill the region delimited by the polygon

• In fact, this is the start point for the real algorithm, the 
scanline algorithm

• The scanline algorithm combines the advantages of filling 
algorithms and of line tracing at the borders in a complex 
but very fast way

• As input one takes an ordered list of points representing 
the polygon



Scanline algorithm

• The basic idea is very simple:
– A polygon can be filled one 

scanline at a time, from top 
to bottom

– Order therefore polygon 
corners according to their 
highest y coordinate

– Order each horizonal line 
according to the x coordinate 
of the edge intersections

– Fill between pairs of edges, 
stop drawing until the next 
edge, and then restart filling 
again till the next one

– once finished the edges at 
current line, restart at next y 
value 

– Of course, one can also draw 
upwards



Scanline algorithm

• Notice that the number of 
edges remains constant 
between starting and ending 
points in the horizontal bands.

• Notice also that segments 
have only a limited contiguous 
range where they are active

• Notice that while proceeding 
downwards, borders can use a 
mirrored DDA to be drawn

• In this way, one can draw line 
borders and fill between them, 
after having ordered the 
border intersections with the 
current line WRT current 
coordinate



Scanline algorithm

• Polygon drawing starts at the 
bottom.

• Out of the edges list the ones with 
lowest starting point are chosen.

• These will remain part of the 
„active edge“ list until their end is 
met

• When they end, they are removed 
and replaced by new starting 
edges

• This until there is no edge left 
among the active edge

• At each value of the y variable, 
the edge rasterization is 
computed, and edges are ordered 
by growing x 

• Colour is then filled between 
sorted pairs of edge 
rasterizations. 



Triangle rasterization

• Modern graphics cards 
accept only triangles at the 
rasterization step

• Polygons with more edges 
are simply triangularized

• Obviously, the 
rasterization of a triangle 
is much easier

• This because a triangle is 
convex, and therefore a 
horizontal line has just the 
left and the right hand 
borders

• Filling is then done 
between the left side and 
the right side



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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