
Computer Graphics: 
6-Rasterization

Prof. Dr. Charles A. Wüthrich, 

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de



Raster devices

• In modern devices the smallest addressable element 
is a point. 

• Each of these dots is called a pixel, or „pel“, for 
picture element.

• Pixels can be represented as being the points of the 
plane having integer coordinates (~Z2)

• Note that this is just a mathematical representation: 
in reality, pixels are often broader than high, and have 
a shape which resemble 
– a 2D gaussian distribution (for CRT screens)

– Small squares (for LCD displays)

– A more or less circular dot (printers)



Rasterization

• Is the operation that 
allows to pass from our 
continuous 
representation of the 
world to the discrete 
world of computers

• It allows drawing lines, 
curves, polygons and 
patches on a 2D 
discrete output device

• How is this done?



Nearest neighbour rasterization

• One has to distinguish 
among two types of 
rasterization:
– Point rasterization:

Given a point P of R2, the 
nearest point P´ of Z2 is its 
rasterization.

– Curve rasterization: nearest 
integer does not work any 
more, since curves are 
continuous

– Rasterization must be based 
on intersection with some 
grid.

– Is there a model that fits 
both methods?

P

P´



Nearest neighbour rasterization

• Sure there is!
• Let D be a compact set of R2, 

ST it is included in the unit 
square (basic domain)

• Let Dz be the translated 
domain of D by the point of 
integer coordinates z=(i,j)

• Let A be a subset of R2

• Def: The rasterization of A is 
the set of all points z such that 
Dz∩A ≠ ∅

• Basically one copies D around 
all points of integer coordinates 
and then takes as rasterization 
the corresponding points

• Different choices of D 
lead to different schemes

Cell rasterization

Grid intersection rasterization



Line rasterization

• Problem: Given the line 
passing through the points 
PI=(xI,yI), PF=(xF,yF), draw its 
rasterization

• Two basic methods for doing 
this:
– Direct algorithms: 

•use global knowledge
•generally slow

– Incremental algorithms:
• require only local 

knowledge
•often highly optimized 



Line rasterization

• Line through PI=(xI,yI), PF=(xF,yF):

• Simplest algorithm:

compute intersections with grid lines x=i, y=j (i,jϵZ)
– Near intersection to next grid point

y=
yF− y I
xF−x I

x+ y I−
yF− y I
xF−x I

xI



Rosenfeld‘s theorem

• There is a theorem that 
halves the number of 
intersection computations 
that have to be made

• Theorem: Let r be the 
straight line y=mx+q. 
Let -1 ≤ m ≤ 1 (slope  

between -45° and 45°). 
All the points of the 
rasterization of r can be 
found by computing the 
intersection with the straight 
lines of the form x=i

• Intersections with y=j do not 
lead to additional points

• Note that a similar theorem can 
be stated for curves and their 
derivatives

• Note that intersections can lead 
to ambiguous rasterization 
points, in case they fall halfway 
between two integer points



DDA algorithm

• Without loss of generality, 
consider q=0

• Let us look at the table of 
the intersections with the 
straight lines x=i

x y

0 q

1 m+q

2 2*m+q

3 3*m+q



DDA algorithm

• Without loss of generality, 
consider q=0

• Let us look at the table of the 
intersections with the straight 
lines x=i

At each step, yi+1=yi+m!!!!

• This gives the idea for a 
new algorithm: we add 
at each step of the 
algorithm 1 to the x and 
m to the y

• The resulting algorithm 
is an incremental 
algorithm, because 
there is no need for the 
general equation

x y

0 q

1 m+q

2 2*m+q

3 3*m+q



DDA algorithm

• Example: y=1/3x+2 
between (0,2) and (6,4)

x y

0 2

1 2,33→2

2 2,66→3

3 3

4 3,33→3

5 3,66→4

6 4

0

dy=yF-yI; dx=xF-xI;

m=dy/dx;

y=yI;

FOR x=xI TO xF

   WritePixel(x,y+0.5);

   y=y+m;

ENDFOR



Integer DDA algorithm

• One can improve the 
algorithm so as to make 
it use integer quantities 
only

• This by using the fact 
that only rational 
numbers are involved in 
a normal environment

• One can therefore 
multiply the equations 
by the maximum 
denominator to get rid of 
the denominators

dx=xF; dy=yF; x=0; y=0;

rest=0;

DrawPixel(x,y);

FOR (i=0; i<=xF; i++)

   x=x+1;

   rest=rest+dy;

   if(rest>dx)

   THEN y=y+1;

      rest=rest-dx;

   ENDIF

   DrawPixel(x,y)

ENDFOR



Bresenham‘s algorithm

• While tracing the line, at 
each step we use a control 
variable to check if we have 
to move to the right or to the 
upper right

• One can use thus a control 
variable to steer whether to 
step upwards or sideways

• Precompute increments and 
the game is done

• Also, mirroring has to be 
done to let the algorithm 
draw all cases, eventually 
through swapping main 
variable

xi xi+1

Pi

d

E

NE



Bresenham‘s algorithm

WritePixel(x,y,value);             
  

   /*first point in line */
   WHILE x<xend DO BEGIN
      x:=x+1;
      IF d<0
         THEN d:=d+incr1;          
            /* increment East */
         ELSE BEGIN       

        /* increment NE */
            y:=y+1;
            d:=d+incr2;
           END
         WritePixel(x,y,value);
      END       /*while*/
   END         /*Bresenham*/

PROCEDURE Bresenham(x1,y1,x2,y2, 
value: integer):

   var dx, dy, incr1, incr2, d, x, 
y, xend: INTEGER;

BEGIN
   dx:=ABS(x2-x1);
   dy:=ABS(y2-y1);
   d:=2*dy-dx;
   incr1:=2*dy;  /* increment E */
   incr2:=2*(dy-dx);  /* increment 

                     
                         NE */
   IF x1>x2
      THEN BEGIN   /* start at

                   point with
                      smaller x */
         x:=x2; y:=y2; xend:=x1;
         END
      ELSE BEGIN
         x:=x1; y:=y1; xend:=x2;
         END



Circle rasterization

• Problem: Given the 
circle x2+y2=r2 draw its 
rasterization

• The most common 
algorithm for drawing 
circles was developed by 
Bresenham

• Consider the second 
octant, from x=0 to 
x=y=r/sqrt(2)

• Let F(x,y)=x2+y2-r2:
F>0 outside the circle
F<0 inside the circle

•



Circle rasterization

• Problem: Given the 
circle x2+y2=r2 draw its 
rasterization

• The most common 
algorithm for drawing 
circles was developed by 
Bresenham

• Consider the second 
octant, from x=0 to 
x=y=r/sqrt(2)

• Let F(x,y)=x2+y2-r2:
F>0 outside the circle
F<0 inside the circle

•

P(xp,yp) E

SE

M ME

MSE

One can show that: 
- if the midpoint between 
E and SE is outside the 
circle, then SE is closer to 
the circle
- Similarly, if the midpoint 
is inside the circle, then E 
is closer to the circle



Circle rasterization

• We choose a decision variable 
d, which is the value of the 
function at the midpoint
dold=F(xp+1,yp-1/2)=
       (xp+1)2+(yp-1/2)2-r2

• If d<0, then E is chosen and 
the increment is
dnew=F(xp+2,yp-1/2)=
 (xp+2)2+(yp-1/2)2-r2

• Thus, dnew=dold+2xp+3, and the 
increment in case of E is 
E=2xp+3.

• If instead d>=0, then SE is 
chosen, and the next midpoint 
will be incremented by
 dnew=F(xp+2,yp-3/2)=
 (xp+2)2+(yp-3/2)2-r2

• Thus, dnew=dold+2xp-2yp+5, and
 SE=2xp+ -2yp+5 

• Here, the two  increments 
vary from step to step

• Otherwise it is similar to line 
drawing

• All it needs now is to compute 
a starting point and we are set 

E

SE

M ME

MSE



Circle rasterization

ELSE
      BEGIN   /* select SE */
         d:=d+2*(x-y)+5;
         x:=x+1; y:=y+1
      END
      WritePixel(x,y,value);
   END         /* While */
END

PROCEDURE 
MidpointCircle(radius,
      value: integer);

   var x, y: INTEGER; d:REAL
BEGIN
   x:=0; y:= radius; 

d:=5/4/radius;
   DrawPixel(x,y,value);
   WHILE y>x DO
   BEGIN
      IF(d<0) THEN
      BEGIN    /* select E */
         d:=d+2*x+3;
         x:=x+1;
      END
          



Circle drawing

• Also this algorithm can be integerized and 
perfectioned

• This by using second order differences
• Note that ellyppses can be drawn in a similar way



Higher order curves

• Suppose we want to rasterize a higher order curve: 
x=f(t) y=g(t) (t [0,1])∈



Higher order curves

• Usually, hardware 
companies would simply 
subdivide the interval 
parameter into equal 
parts (0, 1/n, 2/n …,1)

• Then evaluate the curve 
at these parameter 
values

• Finally plot the polyline 
of the points

• Prone to miss detail of 
the curve



Higher order curves

• A better method is to 
use adaptive steps

• Consider three 
consecutive samples Pi-

1PiPi+1

• If the distance  is 
bigger than a certain 
threshold, then I 
simply half the step

• If it is smaller, then 
I try doubling the step Pi-1

Pi

Pi+1





Polygon Rasterization

• In general, except if we are dealing with wireframes, we 
would want to draw a filled polygon on our screen.

• The advantage is clear: the polygon acquires thickness 
and can be use to render surfaces

• The simplest way one would do that is to draw the polygon 
border and then fill the region delimited by the polygon

• In fact, this is the start point for the real algorithm, the 
scanline algorithm

• The scanline algorithm combines the advantages of filling 
algorithms and of line tracing at the borders in a complex 
but very fast way

• As input one takes an ordered list of points representing 
the polygon



Scanline algorithm

• The basic idea is very simple:
– A polygon can be filled one 

scanline at a time, from top 
to bottom

– Order therefore polygon 
corners according to their 
highest y coordinate

– Order each horizonal line 
according to the x coordinate 
of the edge intersections

– Fill between pairs of edges, 
stop drawing until the next 
edge, and then restart filling 
again till the next one

– once finished the edges at 
current line, restart at next y 
value 

– Of course, one can also draw 
upwards



Scanline algorithm

• Notice that the number of 
edges remains constant 
between starting and ending 
points in the horizontal bands.

• Notice also that segments 
have only a limited contiguous 
range where they are active

• Notice that while proceeding 
downwards, borders can use a 
mirrored DDA to be drawn

• In this way, one can draw line 
borders and fill between them, 
after having ordered the 
border intersections with the 
current line WRT current 
coordinate



Scanline algorithm

• Polygon drawing starts at the 
bottom.

• Out of the edges list the ones with 
lowest starting point are chosen.

• These will remain part of the 
„active edge“ list until their end is 
met

• When they end, they are removed 
and replaced by new starting 
edges

• This until there is no edge left 
among the active edge

• At each value of the y variable, 
the edge rasterization is 
computed, and edges are ordered 
by growing x 

• Colour is then filled between 
sorted pairs of edge 
rasterizations. 



Triangle rasterization

• Modern graphics cards 
accept only triangles at the 
rasterization step

• Polygons with more edges 
are simply triangularized

• Obviously, the 
rasterization of a triangle 
is much easier

• This because a triangle is 
convex, and therefore a 
horizontal line has just the 
left and the right hand 
borders

• Filling is then done 
between the left side and 
the right side



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End


	Computer Graphics: 6-Rasterization
	Raster devices
	Rasterization
	Nearest neighbour rasterization
	Slide 5
	Line rasterization
	Slide 7
	Rosenfeld‘s theorem
	DDA algorithm
	Slide 10
	Slide 11
	Integer DDA algorithm
	Bresenham‘s algorithm
	Slide 14
	Circle rasterization
	Slide 16
	Slide 17
	Slide 18
	Circle drawing
	Higher order curves
	Slide 21
	Slide 22
	Filling polygons (and drawing them)
	Scanline algorithm
	Slide 25
	Slide 26
	Triangle rasterization
	PowerPoint Presentation

