
Framebuffers
Offscreen Rendering and Post Processing

Francesco Andreussi

Bauhaus–Universität Weimar

23 January 2020

F. Andreussi (BUW) Framebuffers 23 January 2020 1 / 14

The Framebuffer

Fig. 1: The Rendering Pipeline (again (again))

The Framebuffer is the final result of the Rendering Pipeline.
It is a memory buffer where the colours of every pixel of the screen are
saved, when the frame is ready to be rendered. It is sometimes called
screen/video/regen(eration)/off–screen buffer and its dimension depends
on the amount of pixels to be drawn (monitor resolution) and color depth
(1/4/8/16/24 bits).

F. Andreussi (BUW) Framebuffers 23 January 2020 2 / 14

Fragment Operations & Tests (1)

Just before writing the Framebuffer, the GPU performs few Tests in order
to be sure of rendering only what the programmer wants.

Fig. 2: The Final Fragment Operations (again (yes, this one too))

F. Andreussi (BUW) Framebuffers 23 January 2020 3 / 14

Fragment Operations & Tests (2)

• Pixel Ownership Test (mandatory): discards data for pixels of the
window that are covered by other elements on the display.

• Scissor Test (optional): discards data for pixels lying outside a
certain scissor rectangle defined by the programmer.

• Alpha Test (optional): discards data of fragments that have a
transparency value not compliant with a dev–defined threshold.

• Stencil Test (optional): discards or modifies a fragment if a specific
relationship with a dev–defined value (stencil buffer) is not satisfied.

• Depth Test (optional): discards a fragment if its depth value does
not satisfy an dev–specified relationship with a value (depth buffer).

• Blending (optional): not a test but an z–dependent operation, that
overwrites the colour in a certain position in the Framebuffer, its
combination with the colour of a fragment in the same position.

• Dithering (optional): improves the colour appearance, especially for
low–quality output devices. [link]

F. Andreussi (BUW) Framebuffers 23 January 2020 4 / 14

https://en.wikipedia.org/wiki/Dither

Framebuffer

A Framebuffer can contain three types of
buffers (attachments): color buffer stores
the glColor data output by the Fragment
Shader, the depth and the stencil buffer
are matrices of values defined in the
Fragment Shader as well with the same
dimensions of the screen, they are used in
the per–fragment operations.

Fig. 3: Framebuffer
Configuration

OpenGl allows the presence of custom Framebuffer Objects, in addition to
the Default Framebuffer and, obviously, allows only one Framebuffer to be
active at a time.

It is possible to clear all the buffers of a Framebuffer with the command
glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT |

GL STENCIL BUFFER BIT).

F. Andreussi (BUW) Framebuffers 23 January 2020 5 / 14

Renderbuffer

Renderbuffers are OpenGL objects similar to textures used for depth and
stencil buffers.

They can only be used as render target and when they are bound to a
Framebuffer (using GL RENDERBUFFER).

glGenRenderbuffer(1, &rb handle)

glBindRenderbuffer(GL RENDERBUFFER, rb handle)

glRenderbufferStorage(GL RENDERBUFFER, format, width,

height)

F. Andreussi (BUW) Framebuffers 23 January 2020 6 / 14

Default Framebuffer

The Default Framebuffer is created with the OpenGL Context, configured
during the Context initialisation and bound by default with index 0.
Its content is what is displayed on screen, and its dimensions changes
automatically accordingly to the window size.

It contains a depth buffer, a stencil buffer and 4 colour buffers:
GL FRONT LEFT, GL FRONT RIGHT, GL BACK LEFT, GL BACK RIGHT. Those
are used in order to enable stereoscopic rendering (left/right) and
double buffering (front/back).

In double buffering, the front buffers are displayed while the back are
written. Then, the buffers the data in the back ones are passed to the
front and the process starts again.

F. Andreussi (BUW) Framebuffers 23 January 2020 7 / 14

Framebuffer Objects

Framebuffer Objects are OpenGL Objects created, configured by the user
at runtime. They can contain up to GL MAX COLOR ATTACHMENTS Colour
Attachments, one Depth and one Stencil Attachment.

It important to remember that all the held buffers must have the same
dimensions and they (can) be written with the varying output of the
Fragment Shader.

F. Andreussi (BUW) Framebuffers 23 January 2020 8 / 14

Framebuffer Definition and Usage

Define Framebuffer
glGenFramebuffers(1, &fbo handle)

glBindFramebuffers(GL FRAMEBUFFER, fbo handle)

Define Attachments (one call for each attachment to be defined)
glFramebufferTexture(GL FRAMEBUFFER, GL COLOR ATTACHMENTi /

GL DEPTH ATTACHMENT, tex handle, mipmap level)

glFramebufferRenderbuffer(GL FRAMEBUFFER,

GL DEPTH ATTACHMENT / GL STENCIL ATTACHMENT,

GL RENDERBUFFER, rb handle)

Define which Buffers to Write
GLenum draw buffers[n] = {GL COLOR ATTACHMENT0, ...}
glDrawBuffers(n, draw buffers)

glDrawBuffers(1, GL DEPTH ATTACHMENT/GL STENCIL ATTACHMENT)

Check that the Framebuffer can be written; hence, that...
glCheckFramebufferStatus(GL FRAMEBUFFER) !=

GL FRAMEBUFFER COMPLETE
F. Andreussi (BUW) Framebuffers 23 January 2020 9 / 14

Offscreen Rendering
Theory

Since only the Default Framebuffer content is actually displayed, the
content of a Framebuffer Object must be transferred to the Default.

Direct data transfer via blitting (special copy–pasting operation for
fragment values between Framebuffers) is slow and not so flexible.

A better technique is defining a quad in front of the “Main Camera”,
feeding (through the Rendering Pipeline) the Default Framebuffer.

This method is commonly used for picture–in–picture, dynamic and
high–detailed mirroring effects and post–processing.

Fig. 4: Offscreen Rendering Scheme

F. Andreussi (BUW) Framebuffers 23 January 2020 10 / 14

Offscreen Rendering
Screen Quad

Fig. 5: The Screen Quad

No transformation needed because it
is already defined in Normalised
Device Coordinates.
It is possible to define the vertices in
the order v1, v2, v3, v4, and
render them as a
GL TRIANGLE STRIP.
In addition, there are needed a Vertex
Shader, calculating only Texture
Coordinates, and a Fragment Shader,
for sampling and mapping the
texture passed from the Framebuffer
Object and output the correct color
to the Default Framebuffer.

F. Andreussi (BUW) Framebuffers 23 January 2020 11 / 14

Post–Processing Effects (1)

The Post–Processing capabilities are limited only by your imagination! It is
possible to find interesting effects as “Filters” in tons of mobile apps.
Here, three only three effects will be analysed:

• Grayscale: computing a value taking in account how much light is
emitted by a pixel; however, the magnitude of the RGB vec3 is not
accurate enough because the perceived luminance is different for the
three channels. Hence, the values should be weighted in this way:
luminance = 0.2126 ∗ R + 0.7152 ∗ G + 0.0722 ∗ B.

• Mirroring: inverting the texture coordinates around the desired axes.

• Blur: overwriting the colour of the target pixel with the weighted sum
of the colours of the neighbouring pixels. It requires to know the pixel
size and, hence, the offset for reading the colours of the neighbours.

F. Andreussi (BUW) Framebuffers 23 January 2020 12 / 14

Post–Processing Effects (1)

• Blur (continued): It can be computed from the relation
pass TexCoord = pixel size · gl FragCoord, where
pass TexCoord is the position of the texel in texture space and
gl FragCoord is its position in window space. The weights for the
computation are taken from a Gaussian Kernel: a square matrix (the
bigger it is, the less blurred is the effect and the more is hard for the
GPU) looking like the one here.

Fig. 6: A 3x3 Gaussian Kernel

F. Andreussi (BUW) Framebuffers 23 January 2020 13 / 14

Thanks for the Attention!

F. Andreussi (BUW) Framebuffers 23 January 2020 14 / 14

