
Computer Graphics:
4-Modern Graphics

Prof. Dr. Charles A. Wüthrich,

Fakultät Medien, Medieninformatik

Bauhaus-Universität Weimar

caw AT medien.uni-weimar.de

Introduction

• Themes of the this lesson will be:
– modern graphics hardware architectures
– modern graphics hardware programming,

I.e. shading languages

• It will be far from complete, but hopefully it
will give you an idea

Graphics hardware

• The Graphics Application pipeline

Application Geometry Rasterization

• Supplies geometric
data:

– points,
– polygons,
– Curves

• Converts into
triangles

• Apply
transformations

• Shading
• Clipping

• Fill pixel by pixel
surviving triangles

• Uses interpolation
on vertex data

From the gfx pipeline to hardware

• This pipeline can be seen as a production line
(assembly line):
– Polygons are fed in and processed in stages

Application Geometry Rasterization

C
o
p
y
ri

g
h
t

©
 1

9
6

8

T
o
y
o
ta

 M
o
to

r
C

o
rp

o
ra

ti
o
n

From the gfx pipeline to hardware

• While one polygon gets e.g.
transformed for viewing
another one gets rasterized

• Like in pipeline processors
• Once processed data is

handed elsewhere,
something else is done with
the data

• This is what pipeline
processors do

Application Geometry Rasterization

C
o
p
y
ri

g
h
t

©
 1

9
6

8

T
o
y
o
ta

 M
o
to

r
C

o
rp

o
ra

ti
o
n

From the gfx pipeline to hardware

• Now the trick is to make processing so that balance load is
even, and this is most difficult:
– Triangles might be of different size, so that their processing might

take different time and unbalance the pipeline
– Or they might be too many (small triangles), so that they are too

many to process in the required time and not use optimally the
bandwidth

• The result is that the pipeline has to be optimized as much as
possible:
– too many polygons implies slow geometry processing
– too big triangles mean also a problem because the single ones

render slowly (rasterizer -> scan convertion slow)

Application Geometry Rasterization

From the gfx pipeline to hardware

• To solve this, one can use parallelism: instead of one
only unit one uses many in parallel to perform longer
tasks like geometry processing or the scanline algorithm

• Between the stages FIFO queues are used
– to facilitate the filling of the various stages and
– to prevent backwards stalling in the pipeline (Stau)

Application Geometry Rasterization

From the gfx pipeline to hardware

• During history, graphics cards evolved from the end of
the pipeline upwards
– Early 1990s: Visibility and rasterization was in hardware
– 1999: transformations and lighting moved to the graphics

cards
• Ambient, diffuse and Phong shading, alpha channel blending

and fog moved to HW

– Interfaces however were different for each vendor, which
was not good for developers

Application Geometry Rasterization

Programmable processors

• To solve this, instead of fixed function processors,
programmable geometry and fragment processors were
introduced in parallel to the fixed function stages

• These generic processors were baptized
– Vertex shaders
– Fragment shaders (pixel shader in DirectX)

Application Geometry Rasterization

Vertex shader Pixel shader

Geometry stage

Programmable processors

• The pipeline looked then like this:

T
ri

an
gl

e
da

ta

V
er

te
x

Pr
oc

es
so

r

Fi
xe

d
fo

rm
tr

an
sf

or
m

,
L

ig
ht

in
g

C
li

pp
in

g
+

 V
ie

w
po

rt
 m

a p
pi

ng

Rasterizing stage

Pi
xe

l
Pr

oc
es

so
r

Fi
xe

d-
fo

rm
 te

xt
ur

in
g

T
ri

an
gl

e
se

tu
p

D
is

pl
ay

Vertex processor

• Vertex processor processes one vertex of
a triangle at a time:
– Recieves coordinate values
– Receives a set of constants for this vertex

(surface properties)
• Has a number of operators to manipulate

these coordinate values:
– Dot product, subtract, normalize…)

• Outputs a new vertex
(which might have a new format):
– New XYZ
– Normals, colors, texture coordinates….

• Can therefore deform geometry in world
or view space

Vertex
Processor

Fixed form
transform,

lighting

Clipping + Viewport mapping

Triangle setup

Fixed form
texturing

Pixel
Processor

 Triangle data

 Display

G
eom

etry stag e
R

asterizing sta ge

Vertex processor

• Vertex processor and fixed
transform processor output
data for the vertices of
the triangle

• Then culling and clipping is done
and the triangle is passed
to the raster processor

• In a first stage the triangle
is setup for interpolating
across its surface

Vertex
Processor

Fixed form
transform,

lighting

Clipping + Viewport mapping

Triangle setup

Fixed form
texturing

Pixel
Processor

 Triangle data

 Display

G
eom

etry stag e
R

asterizing sta ge

Geometry processor

• Since 2006, an additional geometry shader
has been added to the pipeline right after
the vertex shader

• Use is optional
• Its inputs are single objects (triangles,

lines, points)
• Such primitives can be extended
• The geometry shader processes the

primitive and outputs other primitives
(points, polylines or triangle strips)

• This allows to modify

Vertex
Processor

Fixed form
transform,

lighting

Clipping + Viewport mapping

Triangle setup

Fixed form
texturing

Pixel
Processor

 Triangle data

 Display

G
eom

etry stag e
R

asterizing sta ge

Vertex
Processor

• Whenever a pixel of a triangle is drawn, the fragment
processor is capable of accessing
– The interpolated values from vertex data
– Stored constant data (originally textures):

such texture access can also be used
to access indirectly other textures
(dependent texture read)

• Per pixel the fragment processor
manipulates these data

• It optionally then writes these data
to the Z-buffer, computing first
– RGB values
– Optionally Z-values

• Pixel processor operations can only
be done by the graphics hardware
(too slow on the CPU)

Fragment (pixel) processor

Pixel
Processor

Vertex
Processor

Fixed form
transform,

lighting

Clipping + Viewport mapping

Triangle setup

Fixed form
texturing

Pixel
Processor

 Triangle data

 Display

G
eom

etry stag e
R

asterizing sta ge

Fragment (pixel) processor

• Originally, the fragment processor was able only to perform
integer (fixed point) operations

• Nowadays, they can do full floating point
minimizing discretization effects

• Moreover, it can render to multiple
buffers (multiple targets)

• These targets can be reused as textures
again fur further computations

• Originally, conditional access was used for
doing multiple pass renderings:
remember the illumination equation?

• Conditional texture access and floating
point precision allows parallel execution
of more complex functions

Pixel
Processor

Vertex
Processor

Fixed form
transform,

lighting

Clipping + Viewport mapping

Triangle setup

Fixed form
texturing

Pixel
Processor

 Triangle data

 Display

G
eom

etry stag e
R

asterizing sta ge

Evolving to generic processors

• The instruction sets of vertex and pixel shaders
(and the new geometry shader) have become
more and more complex
– Branching (IF)
– Dynamic IF
– FOR loops
– Multiple function calls also possible

• Programs written for such units are called
shaders

• Since the addition of complex functionality in
shaders, slowly the fixed parts of the processing
can be replaced in the more flexible vertex and
pixel units

• Moreover, the Geometry and Fragment stage
programming instructions have converged in
time to become very similar

• With removal of the specialized units, the
 pipeline becomes like this:

Pixel
Processor

Vertex Shader

Clipping + Viewport mapping

Triangle setup

 Data

 Display

G
eom

etry stag e
R

asterizing sta ge

Geometry Shader

Triangle traversal

Pixel Shader

Merger

Clipping

Evolving to generic processors

• In the last stage, called the merger, the
depth and color of the individual
fragments are combined with the frame
buffer.

• Performs:
– stencil buffer
– Z-buffer
– Color blending (transparency).

• Note that in the picture we have noted
– Orange: fully programmable stages
– Yellow: configurable stages
– White: fixed stages

Pixel
Processor

Vertex Shader

Viewport mapping

Triangle setup

 Data

 Display

G
eom

etry stag e
R

asterizing sta ge

Geometry Shader

Triangle traversal

Pixel Shader

Merger

Clipping

Evolving to generic processors

• In parallel, C-like shading
languages have been developed
– Main representatives:

HLSL, CG, GLSL, CUDA, OpenCL

– These languages are translated
by the compiler into a unified
Intermediate Language (IL)

– IL is some sort of machine independent
assembly language

• The IL is then translated into
machine code by the drivers of the
graphics card

Pixel
Processor

Vertex Shader

Viewport mapping

Triangle setup

 Data

 Display

G
eom

etry stag e
R

asterizing sta ge

Geometry Shader

Triangle traversal

Pixel Shader

Merger

Clipping

Virtual machine

• The virtual machine is a processor with
various registers and data sources and can
be programmed with a set of instructions

• The processor has 4 way SIMD capabilities
– Each register contains four independent

variables, usually floating points
– Recently they can contain also integers
– Typically they are positions (homogeneous),

normals, rows of a matrix, colors or texture
coords.

– The card would also support aggregate data
structures such as array, matrices and structs

• To facilitate working with vectors one can do:
– swizzling (reordering, replicating of vector

elements)
– Masking: using only some of the vector

components

Pixel
Processor

Vertex Shader

Viewport mapping

Triangle setup

 Data

 Display

G
eom

etry stag e
R

asterizing sta ge

Geometry Shader

Triangle traversal

Pixel Shader

Merger

Clipping

Virtual machine

• What happens when the graphics
subsystem is executed?

– A draw call invokes the graphics
API to draw a group of primitives,
causing the pipeline to execute

• Each programmable shader
accepts two types of input:

– Uniform inputs: values stay the
same through the whole draw call -
they reside in read only registers or
read-only buffers

• A texture is a uniform input:
originally colors, nowadays however
it is a large array of data

– Varying inputs, different for each
vertex or pixel processed by the
shader: they are much less in
number

• Aside from that there are also
general purpose temporary
registers, used as
scratch

• All registers can be addressed as
arrays

 Temporary
registers

 Varying input
registers

 Constant
registers

 Textures

 Output
registers

Shader
VM

16/16/32 regs

4096 regs

16/32/8 regs

16 buffers of
4096 regs

128 arrays of
512 textures

Virtual machine

• Which operations can I do
faster on graphics HW?

– Scalar and vector mult,
additions

– Any combination of the above
(e.g. dot product)

• Texturing operations are also
fast, but since the results are
big textures, it might take time
to retrieve the results

• Slower are other operations,
such as computing the
arctangent

 Temporary
registers

 Varying input
registers

 Constant
registers

 Textures

 Output
registers

Shader
VM

Virtual machine

• There are two ways of
performing program flow
control:
– Static flow control: based

on the values of uniform
input

• I.e. flow stays same during
draw call

– Dynamic flow control: bases
on the values of varying
inputs

• More costy, because it
might change the flow and
do things a shader is not
necessarily optimized for

• The shader program can be
compiled, and then loaded
into the GPU

 Temporary
registers

 Varying input
registers

 Constant
registers

 Textures

 Output
registers

Shader
VM

Shade trees

• Here a simple example of a shader
program:

float ka=0.5, ks=0.5;
float roughness=0.1;
float intensity;
color copper=(0.8,0.3,0.1);
intensity=ka*ambient()+
 *specular(normal,view,roughness);
final_color=intensity*copper

• This corresponds to a tree of
“effects” to obtain a certain color

Final color

Copper color

Weight of
ambient
component

ambient
light

Weight of
specular
component

Specular
function

Normal View
Surface
roughness

**

*

+

Shading languages

• HLSL, CG, GLSL are evolutions from shade
trees

• Syntax similar to C
• Newer:

– proprietary: CUDA
– Open: OpenCL

• Flow simiilar to C, BUT data can be large
arrays

+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++

End

	Computer Graphics: 4-Modern Graphics
	Introduction
	Graphics hardware
	From the gfx pipeline to hardware
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Programmable processors
	Slide 10
	Vertex processor
	Slide 12
	Geometry processor
	Fragment (pixel) processor
	Slide 15
	Evolving to generic processors
	Slide 17
	Slide 18
	Virtual machine
	Slide 20
	Slide 21
	Slide 22
	Shade trees
	Shading languages
	PowerPoint Presentation

