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Introduction

• Themes of the this lesson will be: 
– modern graphics hardware architectures
– modern graphics hardware programming, 

I.e. shading languages

• It will be far from complete, but hopefully it 
will give you an idea



Graphics hardware

• The Graphics Application pipeline

Application Geometry Rasterization

• Supplies geometric 
data: 

– points, 
– polygons, 
– Curves

• Converts into 
triangles

• Apply 
transformations

• Shading
• Clipping

• Fill pixel by pixel 
surviving triangles

• Uses interpolation 
on vertex data



From the gfx pipeline to hardware

• This pipeline can be seen as a production line 
(assembly line):
– Polygons are fed in and processed in stages

Application Geometry Rasterization
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From the gfx pipeline to hardware

• While one polygon gets e.g. 
transformed for viewing 
another one gets rasterized

• Like in pipeline processors
• Once processed data is 

handed elsewhere, 
something else is done with 
the data

• This is what pipeline 
processors do

Application Geometry Rasterization
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From the gfx pipeline to hardware

• Now the trick is to make processing so that balance load is 
even, and this is most difficult:
– Triangles might be of different size, so that their processing might 

take different time and unbalance the pipeline
– Or they might be too many (small triangles), so that they are too 

many to process in the required time and not use optimally the 
bandwidth

• The result is that the pipeline has to be optimized as much as 
possible: 
– too many polygons implies slow geometry processing
– too big triangles mean also a problem because the single ones 

render slowly (rasterizer -> scan convertion slow)

Application Geometry Rasterization



From the gfx pipeline to hardware

• To solve this, one can use parallelism: instead of one 
only unit one uses many in parallel to perform longer 
tasks like geometry processing or the scanline algorithm

• Between the stages FIFO queues are used 
– to facilitate the filling of the various stages and 
– to prevent backwards stalling in the pipeline (Stau)

Application Geometry Rasterization



From the gfx pipeline to hardware

• During history, graphics cards evolved from the end of 
the pipeline upwards 
– Early 1990s: Visibility and rasterization was in hardware
– 1999: transformations and lighting moved to the graphics 

cards
• Ambient, diffuse and Phong shading, alpha channel blending 

and fog moved to HW

– Interfaces however were different for each vendor, which 
was not good for developers

Application Geometry Rasterization



Programmable processors

• To solve this, instead of fixed function processors, 
programmable geometry and fragment processors were 
introduced in parallel to the fixed function stages 

• These generic processors were baptized
– Vertex shaders
– Fragment shaders (pixel shader in DirectX) 

Application Geometry Rasterization

Vertex shader Pixel shader



Geometry stage

Programmable processors

• The pipeline looked then like this:
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Rasterizing stage
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Vertex processor

• Vertex processor processes one vertex of 
a triangle at a time:
– Recieves coordinate values
– Receives a set of constants for this vertex 

(surface properties) 
• Has a number of operators to manipulate 

these coordinate values:
– Dot product, subtract, normalize…)

• Outputs a new vertex 
(which might have a new format):
– New XYZ
– Normals, colors, texture coordinates….

• Can therefore deform geometry in world 
or view space
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Vertex processor

• Vertex processor and fixed
transform processor output
data for the vertices of
the triangle

• Then culling and clipping is done
and the triangle is passed
to the raster processor

• In a first stage the triangle
is setup for interpolating 
across its surface
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Geometry processor

• Since 2006, an additional geometry shader 
has been added to the pipeline right after 
the vertex shader

• Use is optional
• Its inputs are single objects (triangles, 

lines, points)
• Such primitives can be extended
• The geometry shader processes the 

primitive and outputs other primitives 
(points, polylines or triangle strips)

• This allows to modify 
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• Whenever a pixel of a triangle is drawn, the fragment 
processor is capable of accessing 
– The interpolated values from vertex data
– Stored constant data (originally textures):

such texture access can also be used
to access indirectly other textures
(dependent texture read)

• Per pixel the fragment processor
manipulates these data

• It optionally then writes these data
to the Z-buffer, computing first
– RGB values
– Optionally Z-values

• Pixel processor operations can only
be done by the graphics hardware
(too slow on the CPU) 

Fragment (pixel) processor
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Fragment (pixel) processor

• Originally, the fragment processor was able only to perform 
integer (fixed point) operations

• Nowadays, they can do full floating point
minimizing discretization effects

• Moreover, it can render to multiple
buffers (multiple targets) 

• These targets can be reused as textures
again fur further computations

• Originally, conditional access was used for
doing multiple pass renderings: 
remember the illumination equation?

• Conditional texture access and floating
point precision allows parallel execution
of more complex functions
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Evolving to generic processors

• The instruction sets of vertex and pixel shaders 
(and the new geometry shader) have become 
more and more complex
– Branching (IF)
– Dynamic IF
– FOR loops
– Multiple function calls also possible

• Programs written for such units are called 
shaders

• Since the addition of complex functionality in 
shaders, slowly the fixed parts of the processing 
can be replaced in the more flexible vertex and 
pixel units

• Moreover, the Geometry and Fragment stage 
programming instructions have converged in 
time to become very similar

• With removal of the specialized units, the 
        pipeline becomes like this:
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Evolving to generic processors

• In the last stage, called the merger, the 
depth and color of the individual 
fragments are combined with the frame 
buffer.

• Performs:
– stencil buffer
– Z-buffer
– Color blending (transparency).

• Note that in the picture we have noted
– Orange: fully programmable stages
– Yellow: configurable stages
– White: fixed stages
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Evolving to generic processors

• In parallel, C-like shading 
languages have been developed
– Main representatives: 

HLSL, CG, GLSL, CUDA, OpenCL

– These languages are translated 
by the compiler into a unified 
Intermediate Language (IL) 

– IL is some sort of machine independent 
assembly language

• The IL is then translated into 
machine code by the drivers of the 
graphics card
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Virtual machine

• The virtual machine is a processor with 
various registers and data sources and can 
be programmed with a set of instructions

• The processor has 4 way SIMD capabilities
– Each register contains four independent 

variables, usually floating points
– Recently they can contain also integers
– Typically they are positions (homogeneous), 

normals, rows of a matrix, colors or texture 
coords. 

– The card would also support aggregate data 
structures such as array, matrices and structs

• To facilitate working with vectors one can do: 
– swizzling (reordering, replicating of vector 

elements)
– Masking: using only some of the vector 

components
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Virtual machine

• What happens when the graphics 
subsystem is executed?

– A draw call invokes the graphics 
API to draw a group of primitives, 
causing the pipeline to execute

• Each programmable shader 
accepts two types of input: 

– Uniform inputs: values stay the 
same through the whole draw call - 
they reside in read only registers or 
read-only buffers

• A texture is a uniform input: 
originally colors, nowadays however 
it is a large array of data

– Varying inputs, different for each 
vertex or pixel processed by the 
shader: they are much less in 
number

• Aside from that there are also 
general purpose temporary 
registers, used as 
scratch

• All registers can be addressed as 
arrays

 Temporary 
registers

 Varying input 
registers

 Constant 
registers

 Textures

 Output
registers

Shader
VM

16/16/32 regs

4096 regs

16/32/8 regs

16 buffers of
4096 regs

128 arrays of
512 textures



Virtual machine

• Which operations can I do 
faster on graphics HW?

– Scalar and vector mult, 
additions

– Any combination of the above 
(e.g. dot product)

• Texturing operations are also 
fast, but since the results are 
big textures, it might take time 
to retrieve the results

• Slower are other operations, 
such as computing the 
arctangent 

 Temporary 
registers

 Varying input 
registers

 Constant 
registers

 Textures

 Output
registers

Shader
VM



Virtual machine

• There are two ways of 
performing program flow 
control:
– Static flow control: based 

on the values of uniform 
input

• I.e. flow stays same during 
draw call

– Dynamic flow control: bases 
on the values of varying 
inputs

• More costy, because it 
might change the flow and 
do things a shader is not 
necessarily optimized for

• The shader program can be 
compiled, and then loaded 
into the GPU
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Shade trees

• Here a simple example of a shader 
program:

float ka=0.5, ks=0.5;
float roughness=0.1;
float intensity;
color copper=(0.8,0.3,0.1);
intensity=ka*ambient()+
   *specular(normal,view,roughness);
final_color=intensity*copper

• This corresponds to a tree of 
“effects” to obtain a certain color

Final color

Copper color

Weight of 
ambient 
component

ambient 
light

Weight of 
specular 
component

Specular 
function

Normal View
Surface 
roughness

**

*

+



Shading languages

• HLSL, CG, GLSL are evolutions from shade 
trees

• Syntax similar to C
• Newer: 

– proprietary: CUDA
– Open: OpenCL

• Flow simiilar to C, BUT data can be large 
arrays 



+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++ 

End
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