
Texture Handling
Color and Normal Maps

Francesco Andreussi

Bauhaus–Universität Weimar

9 January 2020

F. Andreussi (BUW) Texture Handling 9 January 2020 1 / 16

Texture Mapping (1)
The Basics

Texturing is a tool to enhance the level of detail of a model.

The most common and convenient way of passing texture data are images
(i.e. matrices of 3D vectors). In order to apply the data to a geometry is
necessary to assign to every vertex a texel (pixel of a texture), that is
identified by a pair of floats in the interval [0,1] (for a 2D texture). The
other values, are obtained with interpolation.

Fig. 1: Basic Texturing Example

F. Andreussi (BUW) Texture Handling 9 January 2020 2 / 16

Texture Mapping (2)
Wrapping

Sometimes we want to use a small texture on a large object and, to
maintain a good resolution, we need to assign to the vertices texels values
outside the [0,1] interval. These values will be processed in different ways
w.r.t. the specified wrapping mode: GL REPEAT, GL MIRRORED REPEAT,
GL CLAMP TO EDGE, GL CLAMP TO BORDER.

Fig. 2: Wrapping Possibilities

F. Andreussi (BUW) Texture Handling 9 January 2020 3 / 16

Texture Mapping (3)
Filtering

The amount of texels is finite, but the texture coordinates are floats. How
to map values that are not exactly corresponding to a texel? OpenGL
provides two alternatives: GL NEAREST (nearest texel position, default,
pixel-ish effect), GL LINEAR (bilinear interpolation of neighbouring texels,
blurred effect).

Fig. 3: Filtering Options

F. Andreussi (BUW) Texture Handling 9 January 2020 4 / 16

Texture Mapping (4)
Mipmapping

Using mipmapping, it is possible to assign textures
with different resolutions to objects w.r.t the
required level of detail we need at a certain moment
(distance from the camera, scaling, etc.). In
OpenGL is possible to pass special texture and
generate a mipmapping texture set with
glGenerateMipmaps.

Fig. 4: A Mipmapping
Texture

Switching between two levels, some artifacts could appear. In order to
minimise these effects it is possible to apply some filtering operations to
the mipmaps:GL NEAREST MIPMAP NEAREST,
GL NEAREST MIPMAP LINEAR, GL LINEAR MIPMAP NEAREST,
GL LINEAR MIPMAP LINEAR.

F. Andreussi (BUW) Texture Handling 9 January 2020 5 / 16

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glGenerateMipmap.xhtml

Texture Initialisation (1)
Theory

An OpenGL Context can handle only a certain number of textures at a
time (GL MAX COMBINED TEXTURE IMAGE UNITS).

It is possible to assign a texture to any of the Texture Units via binding.
The Texture Units have several binding points (one for every kind of
allowed texture), but it is mandatory to use only ONE binding point per
Texture Unit.

In every moment of the program execution, there must be only and only
one active texture.

F. Andreussi (BUW) Texture Handling 9 January 2020 6 / 16

Texture Initialisation (2)
Practice

Initialise Texture
glActiveTexture(GL TEXTURE*)
glGenTextures(tex num, &texture object)
glBindTexture(target, texture object)

Define Texture Sampling Parameters (mandatory)
glTexParameteri(target, GL TEXTURE MIN FILTER, GL LINEAR)
glTexParametri(target, GL TEXTURE MAX FILTER, GL LINEAR)

Define Texture Data and Format
glTexImage2D(target, level, internalformat, width, height, border,

format, type, data)

F. Andreussi (BUW) Texture Handling 9 January 2020 7 / 16

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glActiveTexture.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glGenTextures.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBindTexture.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexParameter.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexParameter.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml

Texture Formatting

glTexImage*(target, level, internalformat, width, height,

border, format, type, data)

• target: binding point for the texture (must match the sense of the
function name)

• level: number of levels of detail in the texture (0 if there’s only the
base image)

• internalformat: internal format of the texture

• width, height: dimensions of the image (valid for 2D images)

• border: thickness of the border (0 means no border)

• format: format of the texel data (should match the
internalformat)

• type: data type of the texel data

• data: pointer to the texture data

glTexImage2D

F. Andreussi (BUW) Texture Handling 9 January 2020 8 / 16

https://www.khronos.org/registry/OpenGL-Refpages/es2.0/xhtml/glTexImage2D.xml

Texture Usage

Bind for Accessing
glActiveTexture(GL TEXTUREk)

glBindTexture(target, texture object)

Upload Texture Unit data to shader
int sampler location = glGetUniformLocation(program handle,

‘‘YourTexture’’)

glUseProgram(program handle)

glUniform1i(sampler location, k)

Use the Sampler in the Shader
uniform Sampler2D YourTexture

vec4 colour from tex = texture*(YourTexture, tex coords)

F. Andreussi (BUW) Texture Handling 9 January 2020 9 / 16

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glActiveTexture.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBindTexture.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glGetUniformLocation.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glGetUniformLocation.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glUseProgram.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glUniform.xhtml

Normal Transformation

Normals are not always affected in the same way of vertices by the normal
transformation: translations have no effect on normals (that are
directions), rotations transform normals and vertices (and surfaces) in the
same way, (non–uniform) scalings, instead, transform normals in the
opposite way w.r.t. the vertex positions.

Hence, it is necessary to transform the normals applying the inverse of the
transformations applied to the vertices (Mnormal = Mvertex

−1).

This operation affects also the rotation values. Luckily, the inverse of a
rotation matrix is its transpose, yet the scaling matrices are not modified
by this operation: RT = R−1 and ST = S .

In order to transform normals correctly, then, we need to invert the
vertices transformation and transpose the result, so the side effects on the
rotation values are erased (i.e. apply the inverse–transpose):
Mnormals = (M−1

vertex)T = M−T
vertex .

F. Andreussi (BUW) Texture Handling 9 January 2020 10 / 16

Normal (or Bump) Mapping

Since a normal is a 3D vector, it could be represented with a colour. It
means that we can pass some normal information via an image.

This results in the possibility of achieving a superior grade of detail and
refinement of the environment, not being forced to use a huger number of
vertices.

Fig. 5: A Normal Map Fig. 6: Normal Mapping Effect

F. Andreussi (BUW) Texture Handling 9 January 2020 11 / 16

Tangent Space

To be completely precise, the values of the Normal Map are to be
interpreted w.r.t. the tangent of a certain fragment. In fact, the Map does
not “encode” in colours the shape of the object which will be applied to.

Fig. 7: Tangent Space

This explains also the predominance
of the blue colour in the Bump
Maps: the vector [0,0,1] represents
the unchanged normal, that is the
vector exiting from the surface in the
direction perpendicular to the two

tangents (
−→
t ,
−→
b forming an

orthonormal basis).

F. Andreussi (BUW) Texture Handling 9 January 2020 12 / 16

Tangent Calculation (1)
Theory

In order to be able to perform the Normal Mapping, it is necessary to
compute in the fragment shader the tangent space values and apply to
them the new values (passed with the Normal Map).

For this purpose, the differential GLSL functions dFdX and dFdY are going
to be used. They measure the variation in the values between one element
and its neighbours, to the right and up respectively. This operation is to
be applied to every fragment in the scene computing the tangent and the
bitangent (inherited from the model shape) of every fragment and to every
pixel of every Bump Map calculating the variation in the position of the
values from pixel to pixel.

Now, the tangent and bitangent of each vertex can be computed;
transforming the coordinates of the Map into the model space of the
object.

F. Andreussi (BUW) Texture Handling 9 January 2020 13 / 16

Tangent Calculation (2)
Practice

vec3 q0 = dFdx(vertex_pos.xyz);

vec3 q1 = dFdy(vertex_pos.xyz);

vec2 st0 = dFdx(uv.st);

vec2 st1 = dFdy(uv.st);

vec3 S = normalize(q0 * st1.t - q1 * st0.t);

vec3 T = normalize(-q0 * st1.s + q1 * st0.s);

F. Andreussi (BUW) Texture Handling 9 January 2020 14 / 16

Normal Mapping
Pros & Cons

Pros:

• Much simpler and lighter
geometry objects,

• Flexibility in the use of the Map
(tiling, reusing for different
objects...).

Cons:

• The silhouette is not affected
from the bump mapping, i.e.
the edge are still flat,

• No self–shadowing (but recent
works solved this problem).

F. Andreussi (BUW) Texture Handling 9 January 2020 15 / 16

Thanks for the Attention!

F. Andreussi (BUW) Texture Handling 9 January 2020 16 / 16

