
Shading with GLSL
Vertex, Fragment Shaders & the Shading Equation

Francesco Andreussi

Bauhaus–Universität Weimar

10 December 2019

F. Andreussi (BUW) Shading with GLSL 10 December 2019 1 / 11

Shaders Recap

The Shaders are additional programs necessary to the rendering pipeline.

Some shaders, such as the Geometry and the Tessellation, are optional
while the Vertex and the Fragment are BOTH compulsory.

Fig. 1: The Rendering Pipeline (again)

F. Andreussi (BUW) Shading with GLSL 10 December 2019 2 / 11

Vertex Shader

The Vertex Shader processes one
vertex at a time and its main
function is to compute the vertex
position in Clip Space.

Fig. 2: An essential Vertex Shader

Therefore, a Vertex Shader must have as input the vertex position (in
object space). This is a Varying (it varies from vertex to vertex) as well as
all the other vertex–specific attributes (e.g. the colour).

All the others inputs are called Uniforms and they are constant for all the
vertices processed by a specific shader.

The varying Outputs of a Vertex Shader are forwarded throughout the
pipeline.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 3 / 11

Fragment Shader

Fig. 3: An essential Fragment Shader

The Fragment Shader process one
fragment at a time and outputs (at
least) the color of that fragment.

Its minimum input is the value of the fragment position in viewport space
(generated in the rasterisation step), which is a Varying (it varies for each
fragment), as well as all the other data generated by interpolating the
output values of the Vertex Shader, which are also generated during the
rasterisation.

Here, as in every other shader, it is possible to have Uniforms: values
constant for all the fragments processed by a specific shader.

The varying Outputs are passed to the next steps of the pipeline.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 4 / 11

The Shading Equation

Theoretically, we’d like to compute the color (aka light) emitted and/or
reflected in every direction from every “piece” of material:

Lo(X ,−→v) =

∫
‖S2‖

Li (Y ,
−→
l)|
−→
l · −→n |f (−→v ,

−→
l) dl .

That is practically not achievable, so the formula is made computable in
this way:

Lo(X ,−→v) = A +
∑

Y∈lights
β(Y ,X)|

−→
l · −→n |f (−→v ,

−→
l) ,

where A is the Ambient term, β is the incoming light intensity function
and f is the BRDF.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 5 / 11

Ambient Term & Point Lights

The Ambient term is only a color (usually really dark) used in order to
light up a bit the shadowed parts of an object that, otherwise, would be
completely black since the indirect lights are not taken in account.

Since Li (Y ,
−→
l) do not account for the decay of the light power, we use

instead β that is the intensity of the light that reaches the processed
fragment.

β(Y ,X) =
φ

4π |Y − X |2
,

where φ = lightColor · lightIntensity .
In this function the direction of the light does not matter because a Point
Light emits the same amount of energy in every direction.

NOTE that in this approximation the Lights are not rendered; in fact,
only the effects of the emitted light can be seen, and another Geometry
has to be placed in order to signal the position of the Light.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 6 / 11

Lambertian BRDF

A Bidirectional Reflectance Distribution Function is a function
calculating how the light reflected from surface is distributed in the space.
It determines the way of perceiving a surface affecting its appearance
hence different materials have different BRDFs and/or the same function
but with different parameters.

The Lambertian BRDF is the function for perfectly matte surfaces: the
incoming light is reflected equally in every direction.

f (−→v ,
−→
l) =

ρ

π
,

where ρ is the “reflectivity” and f (−→v ,
−→
l) = 0, if |−→v · −→n | < 0

or |
−→
l · −→n | < 0.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 7 / 11

Blinn–Phong BRDF

Blinn–Phong (such as simple Phong) are, instead, useful to render plastic
surfaces being able to decide its glossiness. The Blinn–Phong function is
slightly more efficient, but also complex, than the Phong.

Phong: f (−→v ,
−→
l) = Cs(−→r · −→v)α, where −→r is the reflected vector of

−→
l

w.r.t. −→n and Cs is the specular color of the material.

Blinn–Phong: f (−→v ,
−→
l) = Cs(

−→
h · −→v)4α, where

−→
h =

−→
l +−→v

‖
−→
l +−→v ‖

(the

normalized
−→
l +−→v).

Hence, the complete Blinn–Phong Shading function is:

Lo(X ,−→v) = A +
∑

Y∈lights
β(Y ,X)(Cd(

−→
l · −→n)

ρ

π
+ Cs(

−→
h · −→v)4α) ,

F. Andreussi (BUW) Shading with GLSL 10 December 2019 8 / 11

Interpolation Qualifiers

In GLSL it is possible to specify the way of
interpolating the values that are generated by the
vertex and are going to be used to the fragment
shader.

The qualifiers are:

• smooth: the default, gives
perspective–correct interpolation of the
data,

• flat: the values are not interpolated at all,

• non–perspective: the data are linearly
interpolated in window space.

The use is the following: <qualifier>

<in/out> varyingName.
The out qualifiers of the Vertex Shader and the
in ones of the Fragment Shader must match.

Fig. 4: Interpolation
Examples

F. Andreussi (BUW) Shading with GLSL 10 December 2019 9 / 11

Perspective–Correct Interpolation

Since the z–coordinate is non–linear (in windows space) for the
perspective, it is should be taken in account when interpolating the other
values too.

Fig. 5: Interpolation Differences

• linear:
v2 − v1

v4 − v3
=

d1,2

d3,4
,

• perspective–correct:
v ′2 − v ′1
v ′4 − v ′3

6=
d ′
1,2

d ′
3,4

.

For further information, check out this really
short paper.

F. Andreussi (BUW) Shading with GLSL 10 December 2019 10 / 11

https://www.comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdf

Thanks for the Attention!

F. Andreussi (BUW) Shading with GLSL 10 December 2019 11 / 11

