Computer Graphics: 2-Viewing

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Viewing

- Here:
- Viewing in 3D
- Planar Projections
- Camera and Projection
- View transformation

Pipeline

3D World
Coordinates

Clipping
against the
view volume

2D Device Coordinates

tes

Projections

- Maps Points of a coordinate system in the n-dimensional space into a space of smaller dimension.
In computer graphics :3D -> 2D
- Idea:
- Compute intersections of projection rays p with a projection plane π
- The rays pass through point to be projected and the centre of projection
- NOTE: you can't invert this!
~ loss of information

Projections

Perspective Projection

Centre of projection

Parallel
 Projection

Centre of projection
at infinity

Projections

Parallel (orthographic) Projection

Perspective
Projection
(1 vanishing pt)

Perspective
Projection
(2 vanishing pts)

Projections

- Perspective projection models human view system (or photography)
- Realistic but:
- Scales not preserved
- Angles not preserved
- parallel projection less realistic but
- preserve scales and angles
- Preserve parallel lines

Planar projections

Camera metaphor

- Goal: use camera to transform world coordinates into screen coordinates
- Requirement: description of the camera

Description of the camera

- Position and orientation in World Coordinates (WCS)
- Projection point (projection reference point, PRP)
- Normal to the projection plane (view plane normal, VPN)
- Up-vector (view up vector, VUP)

Camera description

Field of view: angle suttended by the viewing window

Camera description

- Clipping
- Window on projection plane (e.g., 35mm film)
- Determines also the view direction (von PRP the mid point CW of the Window)
- Field of View
- Distance of the view plane from the origin (focal length). Alternatively,
- Opening angle (field of view) (FOV)
- Mapping to raster coordinates
- Resolution
- Aspect ratio
- Front and back clipping-planes
- Limits view to „interesting part" of the scene.
- Avoids singularities in computations (by looking back)
- Limits objects that are too far away (background)

Projection with Matrices

- Projective transformations can be represented through Matrices
- Easy example:
- Parallel projection onto $x-y$ plane

$$
\begin{aligned}
& \xi_{\pi}=\xi \\
& \psi_{\pi}=\psi \\
& \xi_{\pi}=0
\end{aligned} \quad M_{\text {ort }}=\left[\begin{array}{llll}
{[1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\square & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad P_{\text {ort }}=M_{\text {ort }} P
$$

Perspective projection

$$
\frac{x_{p}}{d}=\frac{x}{d-z}
$$

$$
x_{p}=\frac{d \cdot x}{d-Z}=\frac{x}{1-Z}
$$

Perspective projection

- The transformation $P(x, y, z)->P_{p}\left(x_{p}, y_{p}, 0\right)$ is performed by multiplying with the matrix $M_{\text {per }}$:

$$
P_{p}=M_{p e r} P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
0 \\
1-\frac{z}{d}
\end{array}\right]
$$

View Transformation

- Problem:
- This works well if coordinate systems are already unified and aligned with world coordinates, but not for the general case.
- Thus we transform the world to where we need it.
- Goal:
- VRP is at origin
- View direction is $-\mathrm{Z}, \mathrm{Y}$ ist Up vector

Normalization

- Moving VRP to the origin: T(-VRP)
- Rotate coordinate system, so that Up vector points UP and the view direction is $-Z$
- orthonormed basis of the Camera Coordinate system with

$$
R_{z}=\frac{V P N}{\|V P N\|} \quad R_{x}=\frac{V U P \cdot R_{z}}{\left\|V U P \cdot R_{z}\right\|} \quad R_{y}=R_{z} \cdot R_{x}
$$

Normalization

- This results in the rotation matrix:

$$
R=\left[\begin{array}{cccc}
r_{1 x} & r_{2 x} & r_{3 x} & 0 \\
r_{1 y} & r_{2 y} & r_{3 y} & 0 \\
r_{1 z} & r_{2 z} & r_{3 z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{ll}
R_{x}{ }^{T}=\left\lfloor\begin{array}{llll}
r_{1 x} & r_{1 y} & r_{1 z} & 1
\end{array}\right\rfloor \\
& R^{T}=\left\lfloor\begin{array}{llll}
r_{2 x} & r_{2 y} & r_{2 z} & 1
\end{array}\right\rfloor \\
R_{z}{ }^{T}=\left\lfloor\begin{array}{llll}
r_{3 x} & r_{3 y} & r_{3 z} & 1
\end{array}\right\rfloor
\end{array}
$$

Recapping

Recapping

- Transformation of the WCS into 2D screen coordinates through matrix multiplication
- Parameter of the virtual camera determine the composing transformation steps
- Of course, if I describe otherwise the camera and viewing system -> different matrices

Note: Some camera parameters are missing, e.g. CW and the aspect ratio of the window. Such parameter can be integrated through simple transformations in the viewing transformations.

End

```
+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++
```

