
Realtime–Rendering with OpenGL
The Graphics Pipeline

Francesco Andreussi

Bauhaus–Universität Weimar

14 November 2019

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 1 / 16



Basic Information

• Class every second week, 11:00–12:30 in this room, every change will
be communicate to you as soon as possible via mail

• Every time will be presented an assignment regarding the arguments
covered by Prof. Wüthrich and me to fulfil for the following class. It
is possible (and also suggested) to work in couples

• The submissions are to be done through push requests on Github and
the work has to be presented in person scheduling an appointment
with me

Delays in the submissions and cheats (e.g. code copied from the
Internet or other groups) WILL NOT be accepted!

If you find code online DO NOT COPY IT but adapt and comment it,
otherwise I have to consider it cheating and you will be rewarded with a 5.0

For any question you can write me at francesco.andreussi@uni–weimar.de

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 2 / 16



Graphics Processors & OpenGL

A 3D scene is made of primitive
shapes (i.e. points, lines and simple
polygons), that are processed by the
GPU asynchronously w.r.t. the CPU.
OpenGL is a rendering library that
exposes some functionality to the
“Application level” and translates
the commands for the GPU driver,
which “speaks” forwards our
directives to the graphic chip.

Fig. 1: Communications between CPU
and GPU

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 3 / 16



OpenGL

OpenGL is an open standard and cross-platform API.

Its compatibility makes it widely used but can cause behavioural
differences between platforms, in particular in case of mistakes or misuse.

This course will cover and use modern OpenGL (4.0, but every version
≥3.0 should work roughly the same). Older versions support the
“immediate mode” which forces to use a lot of low-level functions, while
now for these purposes we use shaders, helping to move many
functionalities (and data) directly in the graphics card.

Actually, OpenGL has been superseded by Vulkan. Announced in 2015,
only recently it has reached a significant market-share.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 4 / 16



The Rendering Pipeline

Fig. 2: The core stages of a Rendering Pipeline

In order to render 2D or 3D computer graphics, our data have to be
processed going from vertices and attributes to coloured pixels in a
viewport.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 5 / 16



Geometry Stage
The Scene Graph

In order to be intuitive for the programmers all the CG related
applications will probably implement and provide a Scene Graph, i.e. an
hierarchical organisation of the objects in the scene.

Every node inherit the coordinate system of their ancestor. Thus,
modifying the localMatrix attribute of a node, we can affect the
position and location of all its descendants.

Then, every node defines its own local coordinate system even, and most
of all, the root of this tree which defines the world coordinate system.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 6 / 16



Geometry Stage
Vertex Processing & Clipping

Fig. 3: The coordinate systems
transformations

The vertex processing is handled by
the programmable vertex shader.
Its main task is to transform the
local coordinate systems of every
abject/model in the scene into the
clip coordinate system.
The vertices in Clip Space are passed
to the Vertex Post-Processing
stage, were clipping (removing all
the vertices that are not in the
frustum), perspective division and
viewport transformation are
performed. Only now, Primitives
Generation is executed.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 7 / 16



Geometry Stage
The Frustum

The frustum defines the portion of
the space that is framed by the
camera. In order to have
perspective we have to multiply the
vertices in Eye/View/Camera Space
by gluPerspective (easier to
manage) or glFrustum (more
flexible).

Fig. 4: A perspective and an orthogonal
frusta

Otherwise, to have an orthographic view, we have to use the matrix
glOrtho.
A frustum can be defined in two ways: glOrtho and glFrustum take
near, far, left, right, top and bottom coords (−n,−f , l , r , t, b) as params,
while gluPerspective has only near, far planes, aspect ratio and vertical
FOV (−n,−f , α, θfov y ).

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 8 / 16



Geometry Stage
Tessellation & Geometry Shader

These two programmable shaders are optional and they are executed
between the Vertex Shader and the Vertex Post-Processing.

Tessellation is subdivided in three steps:

• TCS (control): ensures continuity and coherence between patches —
programmable

• Tess. Primitive Generation: it generates new vertices w.r.t. the input
received from TCS — fixed

• TES (evaluation): compulsory for the execution of tessellation,
similar to a vertex shader but it can generate new vertices too —
programmable

Geometry Shader makes possible to modify dynamically at runtime the
models, useful for Displacement Mapping and Geometry Compression (→
Levels Of Detail).

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 9 / 16



Geometry Stage
Face Culling

Face Culling can be enabled, then the back–face of a triangle is
discarded. OpenGL distinguishes front and back faces w.r.t. the ordering
of the vertices when we define a triangle: clockwise → front,
counterclockwise → back.

Fig. 5: Triangle order definition

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 10 / 16



Rasterising Stage
Rasterisation

It is the core of the pipeline, fixed and essentially
unmodified through the years.

Now, the vertices are in Viewport Space: x , y , z ∈
R, 0 ≤ x ≤ wscreen, 0 ≤ y ≤ hscreen, −1 ≤ z ≤ 1.
However, displays have a finite number of pixels,
then the GPU has to discretize.

Fig. 6: Before/After
Rasterisation

Drawing vertices is trivial (the corresponding pixel is painted), for lines
there are a number of techniques, all based on scanning horizontally or
vertically the pixels between the vertices and assign the interpolated
attributes to the “best approximation” of the line, finally, for triangles,
simplifying a lot, the discretised edges are calculated and then all the pixels
between them receive the bilinearly interpolated attributes of the vertices.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 11 / 16



Rasterizing Stage
Fragment Shader

Arguably, the main part of the Computer Graphics program. It is executed
for each fragment in the scene and takes as (main) inputs:

• gl FragCoord: vec4 storing the fragment location in Window Space,

• gl FrontFacing: bool saying if it belongs the front face of a
triangle (for lines and points always true).

It outputs the fragment colour and, optionally, gl FragDepth (by default
is equal to gl FragCoord.z) and the gl SampleMask (useful for
Multi–sampled Rendering). Thanks to the Fragment Shader efficient and
high–quality lightning and texturing are possible.

P.S: the fragment to pixel ratio is ≥ 1. Objects can overlap and the
rasterisation processes also the hidden parts of a scene.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 12 / 16



Rasterizing Stage
Buffer Tests & Post-Processing (1)

• Pixel Ownership: checks
whether the OpenGL application
is in the foreground for a certain
pixel or not. If not the all the
fragments of that pixel are
discarded,

Fig. 7: Per–Fragment operations
Pipeline

• Scissor Test: throws away the fragments outside a user–defined area
of the viewport,

• Alpha Test: compares the alpha value of a fragment (i.e. its
transparency) to a user-defined constant, if test fails the fragment will
not be rendered,

• Stencil Test: test between an attribute of a fragment and a value
stored in the stencil buffer,

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 13 / 16



Rasterizing Stage
Buffer Tests & Post-Processing (2)

• Depth Test: discards a fragment if a test between the final fragment
depth and the corresponding value stored in a depth buffer fails,

• Blending: the final pixel colour is computed combining the colours of
all the fragments in that position, taking in account vorious
properties, such as alpha,

• Ditching: it, essentially, converts the computed colours from a
high–precision to a lower–precision space.

The Post-Processing it is useful if we have to apply an effect to the
whole scene (B/W, sepia, blur fx...). The basic idea is to take the Frame
Buffer and use it as a texture: modify it with a shader and then map it on
the window.

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 14 / 16



The Application

Fig. 8: Graphics application workflow

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 15 / 16



Useful Links

Offical online resources:

• OpenGL Wiki

• API Reference Guide PDF (v4.6)

• OpenGL Reference Pages

• glBinding documentation

• glfw documentation

• glm documentation

Further online OpenGL tutorials/books:

• Wikibooks

• opengl-tutorial.org

• learnopengl.com

• open.gl

F. Andreussi (BUW) Realtime–Rendering with OpenGL 14 November 2019 16 / 16

https://www.khronos.org/opengl/wiki/Main_Page
https://www.slideshare.net/Khronos_Group/opengl-46-reference-guide
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://glbinding.org/docs.html
https://www.glfw.org/docs/latest/
https://glm.g-truc.net/0.9.9/api/index.html
https://en.wikibooks.org/wiki/OpenGL
http://www.opengl-tutorial.org
https://learnopengl.com/Introduction
https://open.gl/introduction

