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Geometric Primitives

Lesson 1



Models and Coordinate spaces

• In the beginning....         ...... there was an idea...

• Modeling an idea means making it
understandable for a computer

• In Computer Graphics, models are generally
– 3-dimensional AND
– Include Color Modeling

– For animation they also include the modeling of movement

• In this course, we shall limit ourselves to 3D models



Creating a 3D space to work with

• The idea here is to be able 
to represent three-
dimensional objects in a 
computer

• The first thing necessary, of 
course, is to define a proper 
3D space for it:
axes and the units 

• Right handed axes

• Units same on all axes



Adding elements to the space

• Points in space have three 
coordinates P(x,y.z)

• Two points P1P2 build a segment, 
which form a triangle edge e

• In Computer Graphics, objects are 
generally represented as triangle 
meshes

• A mesh is a set of contiguous 
triangles ti

• If the triangles of the mesh have 
one vertex in common the set is 
called a triangle fan
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Adding elements to the space

• Of course, triangles are not the only 
possible basic element of a 3D 
geometry

• One can have more complex 
polygons, like quadrangles of 
polygons with a higher number of 
edges

• Whereby, one must recall that 
polygons are FLAT

• Hardware reduces everything to 
triangles anyhow
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Normals

• For each polygonal element of 
the 3D model, attributes are 
added

– Normal to the surface 
containing the polygon

– Colour of the element 

• Sometimes, instead of having 
ONE  normal N for a polygon, a 
normal Ni is assigned to each of 
its vertices

• This is necessary for 
illumination computations

N1

N2 N3

N



Higher order representation

• Another way to representing 
surfaces is to use instead of 
linear functions (=polygons) 
higher order functions joined 
suitably at the edges

• Spline patches do exactly this: 
the object is represented by 
piecewise defined „patches“ 
joined at their definition edges 
so that they are continuous at 
the joins, like a „patchwork“

• Splines are very flexible in 
shape modeling

• But what is behind spline 
patches?

C
ou

rt
es

y 
T

. F
un

kh
ou

se
r,

 
P

ri
nc

et
on

 U
ni

ve
rs

it
y

C
ou

rt
es

y 
R

us
si

an
 A

ca
de

m
y 

of
 

S
ci

en
ce

s



BRep representation: patches

• The idea is to find families of 
piecewise parametric 
functions that allow a good 
control on shape 

• Patches are joined at the 
edges so as to achieve the 
desired continuity

• Each patch is represented in 
parametric space
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BRep representation: patches

• C0 continuity
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Spline patches

• A point Q on a patch is the tensor product of 
parametric functions defined by control points
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Spline patches

• A point Q on any patch is defined by multiplying control points by 
polynomial blending functions

Q(u , v )=UM [
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44
]M T V T

• What about M then? M describes the blending 
functions for a parametric curve of third degree

U=[u3 u2 u 1]

V=[v3 v2 v 1]



Spline patches

MB− spline=[
−1/6 1 /2 −1/2 1 /6
1/2 −1 1/2 0

−1/2 0 1/2 0
1/6 2 /3 1/6 0

] M Bezier=[
−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

]
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Spline patches

• Third order patches allow the 
generation of free form 
surfaces, and easy 
controllability of the shape

• Why third order functions?
– Because they are the minimal 

order curves allowing inflection 
points

– Because they are the minimal 
order curves allowing to control 
the curvature (= second order 
derivative)
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Basic transformations (2D)

• In the modeling process, it is important to be able to apply to 
objects in space transformations.

• Most important transformations: 
– Translation of a point P: P´=T+P

– Rotation of a point P: P´=RP

– Scaling of a point P: P´=SP

– Where (in 2D):

R=[cos ϑ −sin ϑ
sin ϑ cosϑ ] S=[ sx 0

0 s y
]



Basic transformations (2D)

• Problem is that translation has to be treated differently
• The solution is to use homogeneous coordinates:

                   [x y] [x y 1]
                 [a b c] [a/c b/c]

• What we have done, is basically adding a third coordinate 
representing infinity 
– (when c → 0, the other two coordinates become big)

• This is called projective geometry space, and the new 
coordinates are called homogeeous coordinates

• Translations can be seen as rotations around the infinity, 
because a the circumference of a circle of infinite radius is a 
straight line



Basic transformations (2D)

• With homogeneous coordinates, the transformations become 3x3 
matrices applied to the single point coordinates
                     P´= M  P
where M is one of the following matrices

R=[
cos ϑ −sin ϑ 0
sin ϑ cosϑ 0

0 0 1 ] S=[
sx 0 0

0 s y 0

0 0 1 ]T=[
1 0 dx

0 1 d y

0 0 1 ]
• Such transformations can be concatenated to obtain complex 

transformations. 
• Concatenate means apply one after the other one, which is 

done by multiplying the correspondent matrices
                    P´= M1M2…Mn  P

• CAUTION! Matrix multiplication is NOT commutative!



Example

T

T
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R

R: Rotation 45 degrees
T: Translation
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Basic transformations (3D)

• In 3D, the math is similar:
                  [x y z] [x y z 1]
              [a b c d] [a/d b/d c/d]

T=[
1 0 0 d x

0 1 0 d y

0 0 1 dz

0 0 0 1
] S=[

sx 0 0 0

0 s y 0 0

0 0 sz 0
0 0 0 1

]
R z (ϑ )=[

cosϑ −sin ϑ 0 0
sin ϑ cosϑ 0 0

0 0 1 0
0 0 0 1

] Rx(ϑ )=[
1 0 0 0
0 cosϑ −sin ϑ 0
0 sin ϑ cosϑ 0
0 0 0 1

]R y(ϑ )=[
cosϑ 0 sin ϑ 0

0 1 0 0
−sin ϑ 0 cos ϑ 0

0 0 0 1
]



Hierarchical objects

• Of course it is not always practical to 
have a flat polygonal structure for your 
3D world

• Scenes are usually structured in an 
object oriented hierarchical way

• The object is represented like a tree. 
– One of its parts is chosen as root, and 

is represented in global coordinates 
– The other elements are represented as 

children moving in the local in the local 
coordinate system of the parent

• This is done by matrix multiplication
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Scene Graphs

• Similarly, in a scene, storing is 
made hierarchically in a tree

– Polygons will be grouped into parts 
of objects

– Parts of objects into objects 
– Objects into group of objects
– Group of objects into a scene

• Each node of the scene graph will 
have 

– its transformation matrix WRT 
parent

– geometry (point coordinates)
– attributes (colour, transparency, 

texture, …)  

• Attributes can be inherited from 
the father node
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Traversing Scene Graphs

• Drawing is done by traversing 
the tree

• For traversing, different 
techniques can be used

– Start from one node (usually root)
– Move downwards left, multiplying 

transformations (and inheriting 
attributes), and apply rendering

– Until leaf is reached 
– Retrace back, undoing 

transformations and attributes, until 
first unprocessed child

– Move down and leftmost….
– Until whole tree is processed
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