Computer Graphics: 1-Modeling

Prof. Dr. Charles A. Wüthrich,
Fakultät Medien, Medieninformatik
Bauhaus-Universität Weimar
caw AT medien.uni-weimar.de

Geometric Primitives

Lesson 1

Fakultät Medien

Models and Coordinate spaces

- In the beginning....
- Modeling an idea means making it understandable for a computer
- In Computer Graphics, models are generally
- 3-dimensional AND
- Include Color Modeling
- For animation they also include the modeling of movement
- In this course, we shall limit ourselves to 3D models

Creating a 3D space to work with

- The idea here is to be able to represent threedimensional objects in a computer
- The first thing necessary, of course, is to define a proper 3D space for it: axes and the units
- Right handed axes
- Units same on all axes

Adding elements to the space

- Points in space have three coordinates $\mathrm{P}(\mathrm{x}, \mathrm{y} . \mathrm{z})$
- Two points $\mathrm{P}_{1} \mathrm{P}_{2}$ build a segment, which form a triangle edge e
- In Computer Graphics, objects are generally represented as triangle meshes
- A mesh is a set of contiguous triangles t_{i}
- If the triangles of the mesh have one vertex in common the set is called a triangle fan

A triangle mesh

A triangle fan

Adding elements to the space

- Of course, triangles are not the only possible basic element of a 3D geometry
- One can have more complex polygons, like quadrangles of polygons with a higher number of edges
- Whereby, one must recall that polygons are FLAT
- Hardware reduces everything to triangles anyhow

Normals

- For each polygonal element of the 3D model, attributes are added
- Normal to the surface containing the polygon
- Colour of the element
- Sometimes, instead of having ONE normal N for a polygon, a normal N_{i} is assigned to each of its vertices
- This is necessary for illumination computations

Higher order representation

- Another way to representing surfaces is to use instead of linear functions (=polygons) higher order functions joined suitably at the edges
- Spline patches do exactly this: the object is represented by piecewise defined „patches" joined at their definition edges so that they are continuous at
 the joins, like a „patchwork"
- Splines are very flexible in shape modeling
- But what is behind spline patches?

BRep representation: patches

- The idea is to find families of piecewise parametric functions that allow a good control on shape
- Patches are joined at the edges so as to achieve the desired continuity
- Each patch is represented in parametric space

BRep representation: patches

- C^{0} continuity

Contiol point polyhedra

- C^{1} continuity

Spline patches

- A point Q on a patch is the tensor product of parametric functions defined by control points

Spline patches

- A point Q on any patch is defined by multiplying control points by polynomial blending functions

$$
Q(u, v)=U M\left|\begin{array}{llll}
P_{11} & P_{12} & P_{13} & P_{14} \\
P_{21} & P_{22} & P_{23} & P_{24} \\
P_{31} & P_{32} & P_{33} & P_{34} \\
P_{41} & P_{42} & P_{43} & P_{44}
\end{array}\right| M^{T} V^{T} \quad U=\left[\begin{array}{ll}
u^{3} u^{2} u 1
\end{array}\right]
$$

- What about M then? M describes the blending functions for a parametric curve of third degree

Spline patches

$$
M_{B-\text { spline }}=\left[\begin{array}{cccc}
-1 / 6 & 1 / 2 & -1 / 2 & 1 / 6 \\
1 / 2 & -1 & 1 / 2 & 0 \\
-1 / 2 & 0 & 1 / 2 & 0 \\
1 / 6 & 2 / 3 & 1 / 6 & 0
\end{array}\right]
$$

$$
M_{\text {Bezier }}=\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Spline patches

- Third order patches allow the generation of free form surfaces, and easy controllability of the shape
- Why third order functions?
- Because they are the minimal order curves allowing inflection points
- Because they are the minimal order curves allowing to control the curvature (= second order derivative)

Basic transformations (2D)

- In the modeling process, it is important to be able to apply to objects in space transformations.
- Most important transformations:
- Translation of a point $P: P^{\prime}=T+P$
- Rotation of a point $P: P^{\prime}=R \cdot P$
- Scaling of a point $P: P^{\prime}=S \cdot P$
- Where (in 2D):

$$
R=\left[\begin{array}{ll}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right]
$$

$$
S=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Basic transformations (2D)

- Problem is that translation has to be treated differently
- The solution is to use homogeneous coordinates:

$$
\begin{gathered}
{\left[\begin{array}{lll}
x & y
\end{array}\right] \rightarrow\left[\begin{array}{lll}
x & y & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
\mathrm{a} & \mathrm{c}]
\end{array}\right]}
\end{gathered}
$$

- What we have done, is basically adding a third coordinate representing infinity
- (when $\mathrm{c} \rightarrow 0$, the other two coordinates become big)
- This is called projective geometry space, and the new coordinates are called homogeeous coordinates
- Translations can be seen as rotations around the infinity, because a the circumference of a circle of infinite radius is a straight line

Basic transformations (2D)

- With homogeneous coordinates, the transformations become 3×3 matrices applied to the single point coordinates

$$
P^{\prime}=M \cdot P
$$

where M is one of the following matrices

$$
T=\left[\begin{array}{lll}
1 & 0 & d_{x} \\
0 & 1 & d_{y} \\
0 & 0 & 1
\end{array}\right] \quad R=\left[\begin{array}{ccc}
\cos \vartheta & -\sin \vartheta & 0 \\
\sin \vartheta & \cos \vartheta & 0 \\
0 & 0 & 1
\end{array}\right] \quad S=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Such transformations can be concatenated to obtain complex transformations.
- Concatenate means apply one after the other one, which is done by multiplying the correspondent matrices

$$
P^{\prime}=M_{1} M_{2} \ldots M_{n} \cdot P
$$

- CAUTION! Matrix multiplication is NOT commutative!

Example

R: Rotation 45 degrees T : Translation

Basic transformations (3D)

- In 3D, the math is similar:

$$
\begin{aligned}
& \text { [xyz] } \rightarrow[x y z 1] \\
& \text { [a b c d] } \rightarrow[a / d \mathrm{~b} / \mathrm{d} \mathrm{c} / \mathrm{d}] \\
& T=\left[\begin{array}{lllc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad S=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\vartheta)=\left[\begin{array}{cccc}
\cos \vartheta & -\sin \vartheta & 0 & 0 \\
\sin \vartheta & \cos \vartheta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] R_{y}(\vartheta)=\left[\begin{array}{cccc}
\cos \vartheta & 0 & \sin \vartheta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \vartheta & 0 & \cos \vartheta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] R_{x}(\vartheta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \vartheta & -\sin \vartheta & 0 \\
0 & \sin \vartheta & \cos \vartheta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Hierarchical objects

- Of course it is not always practical to have a flat polygonal structure for your 3D world
- Scenes are usually structured in an object oriented hierarchical way
- The object is represented like a tree.
- One of its parts is chosen as root, and is represented in global coordinates
- The other elements are represented as children moving in the local in the local coordinate system of the parent
- This is done by matrix multiplication

Scene Graphs

- Similarly, in a scene, storing is made hierarchically in a tree
- Polygons will be grouped into parts of objects
- Parts of objects into objects
- Objects into group of objects
- Group of objects into a scene
- Each node of the scene graph will have
- its transformation matrix WRT parent
- geometry (point coordinates)
- attributes (colour, transparency, texture, ...)
- Attributes can be inherited from the father node

Traversing Scene Graphs

- Drawing is done by traversing the tree
- For traversing, different techniques can be used
- Start from one node (usually root)
- Move downwards left, multiplying transformations (and inheriting attributes), and apply rendering
- Until leaf is reached
- Retrace back, undoing transformations and attributes, until first unprocessed child
- Move down and leftmost....
- Until whole tree is processed

End

```
+++ Ende - The end - Finis - Fin - Fine +++ Ende - The end - Finis - Fin - Fine +++
```

