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Solid state sensors

• A sensor places photo-sensitive 
elements in an array.

• Use photoelectric effect: 
generate electro-hole pairs as 
result of photons coming in, and 
measure charge

• Two main types:
– CCD: charge coupled devices
– CMOS: complementary metal-

oxide semiconductor
• Typical characteristics of 

sensors:
– Pixel count: there are limits to it 

due to diffraction (airy disk in 
diffraction through a pinhole)

• The intensity of the first ring 
is 1.75% that of the center 
disc and is located at a 
radius r of r=1.22F 
(wavelength, aperture) 

• r measures resolving power 
of lens, and indicates 
minimum spacing of 2 
points (Rayleigh limit)

– Angular response: light does 
not come straight into the 
sensor
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Solid state sensors

– S/N ratio: charge may 
accumulate or be lost
• noise-equivalent power, 

radiant power that pro- 
duces a signal-to-noise ratio 
of 1.

• detectivity D : reciprocal of 
noise-equivalent power

– Dynamic range: range of 
irradiance detectable

– Responsivity: amount of 
signal generated per unit of 
image irradiance, determined 
by quantum efficiency of 
each pixel and its fill factor

– Linearity: both 
• collection of charge in response 

to incident photons, 
• conversion to a digital signal 

     achieve a linear relationship 
between the number of photons 
and the value of the resulting 
signal

– This is true for most sensors (not 
film)

– Pixel uniformity: differences in 
pixels due to manufacturing.
Sometimes manufacturers 
correct this in firmware
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CCD sensors

• In a CCD sensor, photosensitive 
elements are photodiodes 
arranged in an array, basically 
capacitors

• A photodiode can absorb 
photons, attracting electrons 
which reduce the voltage across 
the diode proportionally to the 
amount of incident power.

• When exposure starts, 
photodiodes collect charge 
until filled (full-well capacity).

• At end of exposure, charges 
are sent to A/D converter. 

• Image is read one pixel at a 
time (slow)

• Thus 3 architectures: 

linear

interline

Frame
transfer
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CCD sensors

• Noise in CCD sensor comes 
from:
– photon statistics, 
– the CCD array itself: 

• transfer noise + 
• dark current (during 

exposure, thermal agitation 
generates electrons) + 

• manufacturing imperfections
• Cosmic noise hitting sensor

– on-chip amplifier, 
– off-chip amplifier(s),
– A/D converter, 
– electrical interference, 
– signal processing steps

• Thus 3 architectures: 

linear

interline

Frame
transfer
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CMOS sensors

• CMOS is used for chips, but can be 
adapted for sensing light

• In CMOS technology, it is possible to 
integrate the sensor array, the control 
logic, and potentially analog-to-digital 
conversion on the same chip.

• Building blocks:
– a pixel array, 
– analog signal processors, 
– row and column selectors,
– timing and control block.

• Nowadays, the photosensor 
at each pixel is augmented 
with additional circuitry, 
such as a buffer/amplifier, 
yielding an active pixel 
sensor (APS)

• APS sensors allow a high 
frame rate

• Analog-to-digital (A/D) conversion circuitry 
may be included for each pixel: digital 
pixel sensor (DPS) (high-speed).

• Drawback: 
– additional circuitry takes up space 
– Heat of A/D converter generates 

temperature differences, which increase 
noise 
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Colour in digital sensors

• Sensors discussed were just 
B/W

• To achieve colour, thin coloured 
micro-lenses are molded on top 
of each sensor.

• Most used: Bayer pattern
• Notice that pattern sense non-

contiguous locations for a single 
colour
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ISO in digital sensors

• Digital sensors have a 
parameter called ISO sensitivity

• Higher ISO values are obtained 
by modifying amplifying gain 
before A/D conversion

• This of course amplifies also 
noise, resulting in more grainy 
images

• To avoid this, manufacturers 
implement noise reduction 
algorithms, which in turn 
degrade the original image

ISO 200

ISO 6400
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Color Filter Arrays

• Sensors are monochrome, 
covered by RGB color filters
(CFA: color filter array)
– mostly arranged on a Bayer 

pattern (2x green) 
• How to reconstruct image?
• Naïve approach: combine 4 

neighbouring pixels to obtain 
pixel color:
– poor spatial resolution

• Better approach: reconstruct 
image same resolution as sensor 
by interpolation 
(demosaicing)

• Luminance values are estimated 
from green values

• If luminance for non-green pixels 
computed through interpolation: 
blur

• Non-linear adaptive average is 
then used:
– Edge detection
– Ensure object edges not blurred

• If one assumes RGB correlated 
in a local image region, then 
edge detection will give more 
detailed values
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Color Filter Arrays

• In a camera, the luminance 
channel (G) may be 
augmented by two 
chrominance channels: 
– R-G (CR)

– B-G (CB). 

• Note that the green value was 
computed using the CFA 
interpolation scheme. 

• This very simple solution is 
intended to minimize firmware 
processing times. 

• To compute missing 
chrominance values, linear 
interpolation is employed 
between neighboring 
chrominance values 
– sometimes neighbors used 

for interpolaton may be 
located diagonally.

• Luminance and chrominance 
values are then converted to 
RGB
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White balancing

• Can be automatic, or user 
specified

• In auto, camera has to infer 
the illuminant fast

• One way to do it is making 
gray-world assumption: 
average colour is 18% gray:
– Compute average colour, 

and correct accordingly
• Second approach: assume 

pixel with highest intensity 
as white
– Fails if non-white light 

sources are in picture, e.g. 
traffic light

• Third approach: analyze 
color gamut of picture
– Use statistical assumptions 

on average surface 
reflectance and emission 
spectra of light sources

– Color gamut is compared to 
pre-defined database

• Usual approach: combine 
the 3 methods

• Pro photographers prefer to 
shoot raw and correct in 
image processing software
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A mathematical camera model

• Math models of camera help understand 
error sources accumulating in acquisition

• Model by Healey and Kondepudy [94]
• Assume # of electrons collected at a 

photosite (x, y) as integral over surface 
area of the pixel (u, v) and over all 
wavelengths λ to which the sensor is 
sensitive.

• Because each electron is charge unit, 
total charge at photosite is

where
– t: integration time in secs

– E’e: spectral irradiance incident onto 
sensor (W/m2)

– Sr: spatial response of pixel
– ck(λ): ratio of charge collected to the 

light energy incident during 
integration (C/J)

• An ideal system has no noise and 
no losses ⇒ all charge converted to 
voltage and amplified with gain g, 
leading to voltage

         V(x,y)=Q(x,y)g

• The A/D converter converts this into 
a number n ST by b bits, 0≤n≤2b-1.

• If quantization step is s, voltage is 
rounded to D=ns, so that 
(n(x, y)−0.5)s<V(x, y)≤(n(x, y)+0.5)s

• Camera firmware processes image n(x,y)
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Sensor Noise Characteristics (SNC) - Reset noise

• Noise can be defined as any 
component of the output 
signal not derived from 
irradiance onto the sensor

• Some such noise will vary in 
time (temporal noise) 
depending on 
– Picture
– Time

• Other noise depends on 
sensor imperfection and will 
induce same imperfection for 
all pictures

• Before image can be taken, potential 
wells are reset

• This takes time: reset-time constant
• For high speed applications, there 

might not be time to reset fully
• Therefore, some potential wells may 

still be charged:
reset noise.

• This can be eliminated by doing 
correlated dual sampling
– Resetting pixel 
– reading pixel once to know reset 

charge left
– Read pixel for final image 
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SNC - Fixed pattern noise

• When sensor is uniformly lit, charge 
collected at every pixel will vary due 
to fabrication errors (Dark Signal 
Non-Uniformity)

• This is corrected by taking picture 
with lens cap on 

• Resulting image measures fixed-
pattern noise

• In the camera model, fixed pattern 
noise shows up as:
– Variation in sensor response Sr

– Variation in the quantum efficiency ck 
(λ ).

• These 2 sensor characteristics are 
each scaled by a constant which is 
fixed (but different) for each pixel.

• Call the constants k1(x,y) and k2(x,y), 
and, because they are constant, they 
can be taken out of integral. 

• Set k(x,y) = k1(x,y) k2(x,y). the 
camera model produces a charge Qn 
for charge collection site (x,y):
   
   Qn(x, y) = Q(x, y) k(x, y)

where n indicates that Q includes 
noise

• The fixed pattern noise k(x,y) is 
taken to have a mean of 1 and a 
variance of σk

2, which depends on 
the quality of the camera design

• This model works if one assumes 
that neighbouring pixels do not 
interact



6/10/19 15

SNC - Dark Current and Dark Current Shot Noise

• In absence of light, electrons 
might still reach potential wells 
collecting charge
– for example because of thermal 

vibrations
• Dark current is the uniform 

distribution of electrons over the 
sensor collected in the dark
– Can be corrected in postprocessing

• Dark current shot noise is 
instead a non-uniformly 
distributed source of noise which 
accumulates in the dark
– Cannot be corrected in 

postprocessing
– Should be minimized

• For extreme applications, cooling 
the sensor helps

• Dark current is independent of 
the number of photoelectrons 
generated.

• The charge associated with the 
number of dark electrons Qdc 
produced by dark current is 
added to the signal 

• This gives a total charge Qn: 

   Qn =Q(x, y)k(x,y) + Qdc (x, y).
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SNC - Photon shot noise

• Photons arrive at sensor 
randomly, with Poisson 
distribution

• If the mean increases, so does 
the variance in signal

• Thus, given a threshold, 
eventually photon noise 
dominates other noises 

• However, below this threshold, 
the other noises dominate

• Photon shot noise can be 
reduced by collecting a higher 
number of photo-electrons
– widen the aperture
– increase exposure time up to the 

limit imposed by the full-well 
capacity of the sensor.

• Photons do Poisson distribution, 
and if sensor linear  

 photoelectrons also follow ⇒
Poisson distribution

• The uncertainty in the number of 
collected electrons can be 
modeled with a zero mean 
random variable Qs, and its 
variance depends
– on number of photoelectrons, 
– the number of dark electrons.

• Thus,

Qn=Q(x,y)k(x,y)+Qdc(x,y)+Qs(x,y).
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Transfer noise

• Transferring accumulated charges to 
the output amplifier may cause 
errors, ⇒ transfer noise

• Can be neglected, because read-out 
efficiency of modern CCD devices 
can be greater than 0.99999.

• The amplifier of a CCD device 
generates additional noise with zero 
mean. 

• This amplifier noise is independent of 
the amount of charge collected and 
therefore determines the noise floor 
of the camera.

• The amplifier applies a gain g to 
the signal, but also introduces 
noise and applies low-pass 
filtering to minimize the effects of 
aliasing.

• The amplifier noise (called read 
noise) is indicated with Q−

r , 
⇒ output voltage of the amp is:

V(x,y) = (Q(x,y)k(x,y) 
  +Qdc(x,y)+Qs(x,y)+Qr(x,y)) g

• Note that 
– fixed pattern noise is multiplied 

with the desired signal, 
whereas the remaining noise 
sources are added to the 
signal. 

– combined signal and noise is 
then amplified by a factor of g
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Quantization noise

• The voltage V produced by the amplifier is subsequently 
– sampled and 
– digitized by the A/D converter. 

• This leads to a further additive noise source Qq, which is 
independent of V 

• This gives:
 
   D(x,y) = (Q(x,y) k(x,y)+Qdc(x,y)+Qs(x,y)+Qr(x,y)) g+Qq(x,y).

• Quantization noise Qq is a zero-mean random variable which is 
uniformly distributed over the range [−0.5q,0.5q] and has a 
variance q2/12
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Implications of noise

• Most noise sources are independent of 
the image irradiance except photon shot 
noise. 

• Thus, all noise sources become 
increasingly important when 
photographing dark environments
– Longer exposures required

• Illustration shows log-log plot of photon 
electrons increasing linearly with 
irradiance

• Look at picture:
– # of photon electrons increases linearly till 

well capacity reached
– After this, Q cannot increase
– All other noise sources are independent 

from incoming photons, 
– except photon shot noise

• But standard deviation of photon shot 
noise increases as the square root of 
the signal level:
– the amount of photon shot noise is a 

straight line w/ slope 0.5
• So sensors should have lots of full 

well capacity, but this depends on 
surface area
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Implications of noise

• Except high-end digital cameras 
(FF sensors), sensors get 
smaller, due to lower cost of 
smaller opticals. 

• Useful for cell phones and web 
cams. 

• Additionally, we see more pixels 
per sensor. 

• The surface area of each 
photosite is reduced, leading to a 
lower full-well capacity, and 
therefore saturation occurs at 
lower image irradiances.

• In addition, the dynamic range of 
a sensor is related to both the 
full-well capacity and the noise 
floor. 

• For high dynamic range cameras, it 
would be desirable to have a high 
full-well capacity: 
– even in the case that all other noise 

sources are eliminated as much as 
possible, dynamic range is limited by 
photon shot noise
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Measuring camera noise

• To measure the noise introduced by a 
digital camera, one can take test targets 
and compare the sensor output with 
known values 
– For instance, images can be taken with 

the lens cap fitted. 

• Or, uniformly illuminate a Lambertian 
surface and take images of it. 

• If sensor characteristics are to be 
estimated, it will be good to defocus such 
an image. 

• Variation in sensor output will be 
determined by 
– camera noise, 
– (small) variations in illumination of the 

surface, 
– (small) variations in reflectance properties 

of the surface.

• We’ll assume test surface 
– to face camera 
– nearly uniformly illuminated with a 

light source

• Reflected radiance Le is then
       Le=(d/)L
where 
– light source strength=L
– d/: fraction of light reflected to 

camera
• The lens in front of the sensor then 

focuses the light onto the sensor so 
that the irradiance incident upon a 
pixel is given by

which we rewrite as
       E’e = ks ρd L
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Measuring camera noise

• To model the (small) variation of the 
illumination and reflectance as 
function of position on the image 
plane, the factors in this equation are 
parameterized as function of 
wavelength λ and position (x, y) on 
the sensor:
      E’e(x,y,λ) = ks ρd(x,y,λ)L(x,y,λ)

• The average illumination on the test 
target is L(λ) and average 
reflectance is ρd(λ

• The illumination onto the test card 
surface that is ultimately projected 
onto pixel (x,y) is then
    L(x,y,λ) = L(λ)+Lr(x,y,λ)
where: 
– Lr deviation from the average L(λ ) 

for this pixel

• Expected value is then 
       E(L(x,y,λ)) = L(λ)
and expected value of residual 
      Lr(x,y,λ)=0

• Similarly, reflectance of the test card 
at position projected onto sensor 
location (x,y) can be split into
– average ρd and

– zero mean deviation ρr(x,y,λ):
   ρd(x,y,λ) = ρd(λ)+ρr(x,y,λ)

• Where 
– E(ρd(x,y,λ)) = ρd(λ)
– E(ρr(x,y,λ)) = 0

• It is reasonable to assume there is 
no correlation between illumination 
and reflection of test card: thus
     E’e(x,y,λ) =ks(L(λ)ρd(λ)+ε(x,y,λ))     
with
ε(x,y,λ) =ρr(x,y,λ)L(λ) +
        ρd(λ)Lr(x,y,λ)+ρr(x,y,λ)Lr(x,y,λ)
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Measuring camera noise

• The expected value of ε is then 0
• The charge collected by the sensor 

can now be split into a constant 
component Qc, and a spatially 
varying component Qv(x,y)
      Q(x, y) = Qc + Qv (x, y)
where

• As E(ε(x,y,λ)) = 0, we have that 
Qv(x,y) has a zero mean and a 
variance that depends on the 
variance in L(λ) and ρd(λ). 

• During calibration procedure, image 
capture is important to control 
illumination of test card to achieve 
illumination that is as uniform as 
possible. 

• Similarly, the test card should have 
as uniform a reflectance as possible 
to maximally reduce the variance of 
Qv(x,y). 

• Most of the variance in the resulting 
signal will then be due to the sensor 
noise, rather than to non-uniformities 
in the test set-up.
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Noise variance

• The variance of the system consists of 
several components. 

• We first discuss these components, 
leading to an expression of the total vari- 
ance of the sensor. 

• Then we can estimate its value by 
photographing a test card multiple times

• Quantized values D(x, y) can be modeled 
as random variables as follows:
   D(x,y) = μ(x,y)+N(x,y)

• Expected value E(D(x,y)) is μ(x,y):
  μ(x,y)=Q(x,y)k(x,y)g+E(Qdc(x,y)g)

• zero-mean noise is modeled by N(x,y):
   N(x,y) = Qs(x,y)g+Qr(x,y)g+Qq(x,y)

• The noise sources can be split into
– a component that does not depend 

on the level of image irradiance
– a component that does. 

• Photon shot noise, modeled as a 
Poisson process, increases with 
irradiance:
         Qs (x, y) g

• Accounting for the gain factor g, the 
variance associated with this 
Poisson process given by 
  g2(Q(x, y)k(x, y)+ E(Qdc(x, y)))

• signal-independent noise sources, 
amplifier noise and quantization 
noise, are given by 
         Qr(x,y)g+Qq(x,y) 
and have combined variance of
         g2 σr

2/12 
where σr

2 variance of  amplifier 
noise
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Noise variance

• Total variance σ2 in noise introduced 
by the sensor is then sum of these 
two variances:
      

• Expected value of dark current for 
given pixel can be replaced by 
– sum of the average expected value 

over the whole sensor +
– deviation from this expected value 

for a given pixel: if we put
QE(dc)(x,y) = E(Qdc(x,y)), then

where 
• QE(dc) average expected value of the 

dark current
• QdE(dc)(x,y) deviation from the expected 

value

• Now we can rewrite:

and if we assume |k(x,y)−1|  1 and ≪
|QdE(dc)(x,y)−QE(dc)|  ≪ QE(dc)

then the variance of sensor noise 
can be approximated as:
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Estimating total variance

• By photographing a uniformly 
illuminated test card twice one 
gets two pictures with same 
subject (=expected pixel value 
(x,y)) but different noises:
     D1(x,y) = μ(x,y)+N1(x,y)
     D2(x,y) = μ(x,y)+N2(x,y)

• Subtracting the images one gets 
an image with 0 mean and 
spatial variance 22

• The expected value of D1 or D2:
    μ=Q(x,y) g + QE(dc) g

• If spatial variance minimized, 
one can replace Q(x,y) with 
spatial mean Q:
 μ=Q g + QE(dc) g

• So the variance in terms of  is

• For two images D1,D2,  can be 
estimated as

and the variance can be estimated 
as

• We have not considered illumination 
yet: to estimate the amp gain g and 
variance of signal-dependent noise 
sources σc

2 = g2σr
2 +q2/12 one can 

vary illumination

Mean of difference image
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Estimating total variance and dark current

• We can then find g and c
2 with a 

line fitting technique

where the sum is over a set of 
image pairs, indexed with an i

• Finally the variance can be 
estimated:

• In the absence of light, a camera will 
still output a signal as a result of dark 
current. 

• By fitting the lens cap, the number of 
photo-generated electrons will be 
zero:  quantized value output by the 
sensor is given by

• The mean value of signal is then 
QE(dc)(x,y)g, and because all noises 
have 0 mean, its variance is 2(x,y).

• Taking a number n of pictures, and 
averaging them, variance will be 
reduced to σ2(x, y)/n.

• If n large enough, pixel values will 
converge to accurate estimate of 
dark current QE(dc)(x,y)g.

^ ^
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Estimating fixed pattern noise

• We now have estimates of
– dark current, 
– amplifier gain, and 
– total variance in the noise

• To estimate fixed pattern noise, it is not 
enough to vary lighting uniformly: 
– non-uniform lighting variations have to be 

taken
– Additionally, the orientation  of the test card 

has to vary

• We can average out the variation due to 
illumination and retain the fixed pattern 
noise k(x, y), here called photo response 
non-uniformity (PRNU) 

• Suppose that we create n1 illumination 
conditions and capture n2 images for each 
of these conditions

• Total noise N(x,y) has 0 mean: we 
average frames for imaging condition i 
     k(x,y)Qi(x,y)g+QE(dc)(x,y)g
with variance i

2(x,y)/n2

• Subtracting estimate of dark current 
yelds
     d(x,y) ≈ k(x,y)Qi(x,y)g 

• This estimate varies due to fixed 
pattern noise and differences in 
illumination and reflectance

• For small pixel neighbourhoods, 
variations in illumination and 
reflectance are small: one can 
compute the mean d(x,y) over small 
windows, usually 9x9 windows
   d(x, y) ≈ Qi(x, y)g  

• Ratio between a single pixel estimate 
and windowed estimate is a rough 
approximation of the fixed pattern 
noise ke(x,y) 

• To refine the approximation, average 
ratio over n1 imaging conditions is 
computed:

_

_
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Calibrating cameras

• To recover a linear relationship 
between the irradiance values 
and the pixel encoding produced 
by the camera, we need to 
model the non-linearities 
introduced by in-camera 
processing. 

• The process of recovering this 
relationship is known as camera 
characterization

• Typically, this is done in two 
ways:
– Using spectral sensitivity, which 

needs expensive equipment 
such as a monochromator

– Using predefined targets

• Target-based techniques make 
use of a set of differently colored 
samples that can be measured 
with a spectrophotometer

• Captured colors and the target 
values are then matched
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Calibrating cameras

• When few shots are made, the measured 
data can be seen as color differences of 
the device (error) and ideal color values

• A transformation can be computed such 
that the difference between the 
transformed device output and the ideal 
response is minimized

• The function

has to be minimized.
• Here ||.|| is CIELAB  E*abcolor 

difference metric
– pn pixel value recorded by the 

camera for the nth stimulus, 
– Pn corresponding measured 

response, 
– N total number of samples,
– fk  transformation being estimated for 

the kth color channel

• Typical techniques for finding the 
mapping from known data include 
linear and polynomial regression, as 
well as neural networks

• Once the camera is calibrated, the 
recovered function fk can be applied 
to all images captured

• Images obtained this way are called 
device independent
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