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This slide pack

• In this part, we will introduce lenses
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Lenses

• The components of an optical system consist of
– aperture ring
– Refractive elements

• Lenses:
– Simple (left): single element

Characteristics:
• Refraction index
• Shape of front+back
• Often coated to improve optical properties

– Compound (right): multiple lenses
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Lenses

• Surface shapes:
– Planar
– Spherical
– Aspherical: some surface which is not a sphere

• Call 
– d0: radius surface facing object plane

– d1: radius surface facing image plane 

• Depending on positive or negative radius, one can have different single 
lens types
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Lenses

• Convex lenses direct light towards the optical axis: convergent or 
positive

• Concave lenses do the opposite and are called divergent or negative
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Spherical surface

• Fermat’s principle ⇒ optical path 
length of ray is n0lo+n1li

• Path length of lo and li is

• Substituting in the 1st
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Spherical surface

• Applying Fermat’s principle by 
using  as the position variable:

thus:

• Rays from P0 to P1 with one 
refraction obey this law

• Remember, if the angle is too 
flat, refraction turns into 
reflection

• Under the hypotheses of 
Gaussian optics cos()≈1.

• If we consider only paraxial rays

thus the eq. on the left becomes

and if the image point is at ∞, 
I.e. if si=∞ , then:
– Object focal length:

• Similarly, image focal length is 
obtained for s0=∞.
– Image focal length: 
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Thin lenses

• However, lenses have a front 
and back surface
– Spherical surfaces of radius d0 

and d1.
– Analyzing front+back we have

– If the lens is thin, then t≈0 ⇒ 

• If lens is surrounded by air, then 
n0≈1 ⇒ lens maker’s formula
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Thin lenses

• If object distance so=∞, the 
image distance becomes the 
image focal length si=fi. 

• Conversely, for points projected 
on an infinitely far away image 
plane, object focal length 
becomes so=fo.

• But lens is thin, so we can set 
fi=fo and call it f

• So, we have

• Note: all rays at distance f in front of 
the lens, and passing through focal 
point, will be parallel after the lens 
(collimated light)

• Combining we find the Gaussian lens 
formula:

• Related to this: transverse (lateral) 
magnification: 

which measures ratio of size of the 
image to the size of the object

• Sign indicates whether it is upside 
down
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Thick lenses

• Most lenses are not thin, they are thick
• We can think they are two spherical surfaces at a 

distance t
• Such lenses behave like the optical systems seen 

before, with 6 cardinal points
• If focal length is measured WRT principal planes, 

then
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Gradient lenses

• Lens design characteristics 
considered up to now:
– Dielectric material
– Curvature of lens

• Placing more elements behind 
each other give additional 
flexibility

• However, one could build lenses 
having different refraction 
indexes at different places

• These are called gradient index 
lenses

• Obtained through immersing into 
salt solutions, which ionize and 
change refraction index

• In this case, one can use 
cylinders as lenses: these are 
called GRIN lenses

• Much more difficult to 
evaluate optically

• Raytracing may be used for 
this evaluation
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Lens aberration

• We did simple lens 
approximations, 1st order

• Lens computations must be 
higher order

• Often, ray tracing is used to 
evaluate lens design, which 
works well in theory

• However, deviations from 
ideal conditions occur: they 
are called aberrations

• These are of two types
– Chromatic aberrations: the 

index of refraction is 
wavelength dependent:
purple fringing

– Rainbow-colour inaccuracies 
on edges
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Lens aberration
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Lens aberration

• Or one can have 
monochromatic aberrations

• Out of focus:
– Spherical aberration
– Astigmatism
– Coma

• Warped image
– Distortion
– Petzval field distortion

• Reason for these aberrations:
– We approximated sinus and 

cosinus linearly 
• sin=linear
• cos=constant

– Assumed paraxial rays 

• This is a pretty rough 
approximation: we cut Taylor 
series to first term:

• One could use higher order 
terms: 
– if one uses 2nd term, one 

obtains so-called Third order 
theory

– Nicer, but higher complexity
• Aberrations here: due to 

Gaussian approximation 
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Spherical aberrations

• For spherical lenses, we 
assumed that the ray has 
same length as path from 
object to image plane 
(on optical axis)

• If we keep term of 2nd 
degree, then equation 

becomes

the extra term depends on h2

with 
– h=distance from point of lens 

where ray meets optical axis

• Light at lens border is 
focused nearer

• Defined as Spherical 
aberration
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Spherical aberrations

• Rays intersect optical axis over a 
length, not a point: longitudinal 
aberration.

• The rays will intersect image 
plane on a region: transversal 
aberration.

• With spherical aberration, rays 
form curved convex hull: caustic

• Diameter of projected spot 
smallest at circle of least 
confusion
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Coma

• Principal planes are well 
approximated only near the 
optical axis

• Further away, they are 
curved

• The effect is called coma:
– Marginal ray focus farther 

than principal ray: positive 
coma

– If closer, negative coma

positive coma
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Astigmatic aberration

• Occurs for off-axis object points
• Meridional plane was defined by 

object point and optical axis
• Chief ray lies in this plane but 

refracts at lens borders
• Sagittal plane:

–   ⊥ meridional plane
– Made by set of planar segments, 

which intersect the chief ray

• Consider: 
– ray bundle in merid. plane
– ray bundle in sagittal plane
– Path length could be different
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Astigmatic aberration

• At sagittal focal point  meridional 
rays will not have converged  :
– elongated focal point, 
– Elongated meridional focal point. 

• For rays neither sagittal nor 
meridional, focal point will be in 
between the sagittal and meridional 
focal points. 

• Somewhere between two focal 
points the cross-section of rays is 
circular

• When we have astigmatism, this 
circle is the place of sharpest 
focal point: circle of least 
confusion
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Petzval field curvature

• For spherical lenses, object 
and image planes are not 
planar, but:
– Positive lens: curve inwards
– Negative lens: curve 

outwards
– Petzval field curvature 

• If a flat image plane is used, 
I.e. on a sensor, the image 
will only be sharp on optical 
axis

• One can correct this by 
combining positive and 
negative lenses

• Example: correct inward 
curvature of positive lens with 
negative length near focal 
point of positive lens:
field flattener.
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Distortion

• Distortion is due to lateral magnification of lens:
– Lateral magnification is not constant as assumed before

• Pincushion distortion: 
lateral magnification increases with distance to optical axis
– Usually positive lenses generate it

• Barrel distortion: lat. mag. decreases with distance to optical 
axis  
– Usually negative lenses generate it
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Cromatic aberrations

• Materials have wavelength-dependent refraction 
index, which influences focal length
– Thus focal length a white light beam lies closer for blue rays 

than to red light
– Distance between these two points on optical axis is the 

axial chromatic aberration
– These rays will hit image at different position (lateral 

chromatic aberration)
– Can be corrected by using thin lenses with different 

refractive indexes (thin achromatic doublets):
• If d is the distance between the lenses, wavelength dep. focal 

length  is f1() and f2(), refraction indexes n1() and n2() 
wavelength dependent focal length f() is then given by
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Cromatic aberrations

• If the index of refraction of 
surrounding medium is 1, then

is wavelength dependent focal 
length. Here, we replaced factor 
depending on front and back 
radius with constants k1,k2.

• Substituting, 

• For the two focal lengths f(R) 
and f(B) to be equal, one must 
place lenses at a distance given 
by solving for d:

• If lenses touch, d=0:

• Now we can have focal length of 
yellow light (Y≈R+B)/2)

• which is



5/21/19 24

Chromatic aberrations

• So, we have:

where w1,w2 are the dispersive 
powers associated with the 
refraction indexes n1,n2.

• Take the standardized 
Fraunhofer spectral lines F,D,C 
and the wavelengths 

• We can now define dispersive 
power of an optical material w:

where V=1/w and is called Abbe 
number, or dispersive index.

• Here, nD=n(lD), .

• For lenses, it is desirable to have 
materials with low dispersion, or 
high Abbe numbers. 
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Blur circle

• An ideal optical system would 
image a point source onto a single 
point on the image plane.

• Due to aberrations:  blurred shape 
on the image plane
– Can be approximated as a circle: its 

radius can be approximated as 
follows:

– Place object at same height h of 
lens aperture height

– Radius b of blur circle is:

– From Gaussian lens
formula

• Rewriting:

• Thus:

where p(s0-s)/ss0 can be seen as 
percentage focus error. 
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Depth of field

• Points on image plane have 
maximum sharpness.

• Objects are not all on image 
plane: some before, some 
after.

• There is a region in which 
points are focused reasonably 
sharp: depth of field.

• Sharpness depends on:
– Size of image plane
– Sensor resolution
– Image reproduction size
– Angular resolution of human 

visual system
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Depth of field

• Far plane becomes infinite when 
denominator goes to 0, i.e. when

solve for s0: hyperfocal distance

which corresponds to the near plane:

so, if the camera fucused on the 
hyperfocal plane, all objects between 
the near plane and infinity will be in 
focus

• Notice that the aperture d affects the 
depth of field!

• If we can make sure that a circle of 
radius b leads to an image that in the 
reproduction appears as a single 
point, then, assuming
– Camera focused at distance s0

– Blur circle smaller aperture (b d≪ )
• Then distance of lens to nearest 

point snear of acceptable focus is

and for farthest point it is 

• The global depth of field is then 
         sfar-snear
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Depth of field

f/3.2 f/16
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