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This slide pack

• In this part, we will introduce geometrical optics:
– Principles of geometrical optics
– Fermat’s principle
– Perspective-projective geometry
– Optical systems

• Optical image formation
– Absolute instruments
– Imaging geometry
– Imaging radiometry
– On-axis and off-axis irradiance
– Effects: Vignetting, glare
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Image capture

• Imaging: 
– mapping of some 

characteristics of the real 
world (object space)

– into another representation 
of this space (image space)

• In general, a capturing 
system will be composed of 
several components
– Components are optimized 

to convey light to the 
sensing device

– Several variables are 
available here, and they 
affect the quality of the 
system

• Despite knowing that light is 
generated by quantum 
mechanics

• In general one would use the 
geometric (optical) 
representation of light for this

• Main assumption:
– Light can be treated as rays, 

because its wavelength is less 
than 1 micron

– Neglectable with respect to 
distances travelled

– Characteristics can be studied 
geometrically

– Whenever light has to be 
treated as waves, one has to 
do it explicitly



• Assuming that 0→0, and that terms 
containing 1/k0 can be neglected, 
from Maxwell’s equation one can 
derive

eikonal equation
n: index of refraction
: eikonal function

nabla operator

• Where  constant phases are 
constant (geometrical wavefronts)

• Energy of the electromagn. wave 
propagates with velocity v=c/n in the 
surface normal to the wavefronts

• Thus light rays are orthogonal to the 
geometrical wavefronts
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The basis of geometrical optics

• An arbitrary complex time 
function of the electromagnetic 
field can be decomposed into 
Fourier components of time 
harmonics

• Let us take a general time 
harmonic field1:

in regions free of currents and 
charges, E0 and H0 will satisfy 
time-free Maxwell equations.

• Define k0=2/0, where  is the 
wavelength in vacuum.

• Away from the source, the fields 
can be represented as general 
fields 

(1) In this chapter, bold variables will represent vectors
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The basis of geometrical optics

• Let 
– r(s) position vector of a point on a light 

ray, 
– s arc length of ray,
– Then dr/ds is a unit vector pointing to 

the direction of the light ray
• One can then rewrite the eikonal 

equation as 

• Because the distance between two 
neighbouring wavefronts d can be 
expressed as 

the integral  

taken on a curve along the path from 
P1 to P2 is called the optical path 
length between the points 

• In most cases, the light ray travels along 
the path of shortest optical length

• However, this is not always true: 
– Light rays travel along the path that have 

zero derivative with respect to time or with 
respect to the optical path length 
(Fermat’s principle)

• Because the light ray is gradient of a 
scalar field, then if the ray vector is 
operated by a curl operator, the result is 
zero

• This proves Snell’s law: incident ray, 
refracted day and surface normal are all 
in the same plane  
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Fermat’s principle

• Eikonal equation describes 
geometrical optics

• Alternatively, one can use 
Fermat’s principle: light follows a 
ray such that optical path length is 
an extremum

• Optical path length:
    ds: arc length
    n refraction index
    a,b: start and end of path 

• Minimizing this integral through 
variation calculus results in the 
ray equation  

• Meaning: 
– at every point of the medium, 

tangent and normal of a ray form 
a plane, called osculating plane 

– The gradient of the refracting 
index must lie in this plane

• Valid for inhomogeneous 
isotropic media which are 
stationary over time

• A consequence of Fermat’s 
principle: if material is 
homogeneous, light travels on a 
straight line

• NOT so for inhomogeneous 
medium
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Perspective geometry

• Define image plane and 
centre of projection 

• All points that are on the 
same line from a centre of 
projection cover each other 

• Projection maps 3D to 2D

• Image plane can be before or 
behind the centre of 
projection

• Mathematical modeling 
relatively simple
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Projective geometry

• Geometry: 
– Elements of set S
– Transformation group T:

one binary operation 
satisfying closure, identity, 
inverse and associativity

• In perspective geometry, 
transformations are linear, i.e. 
in matrix form

• For n-dimensional 
perspective geometry:
– S (points): (x0,x1,…,xn) 

except the centre of 
projection (0,0,…,0) 

• De facto, lines passing 
through the origin

• By convention, the origin is 
centre of projection

– T: Invertible (n+1,n+1) 
matrices
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Projective geometry

• Properties of projective 
geometry:
– Straight lines are mapped 

into straight lines
– Incidence relation is 

preserved
– Cross ratio is preserved
– Images of parallel lines 

intersect at a vanishing point
• Fundamental theorem:

– n+2 independent points are 
enough to determine a 
unique projective 
transformation in 
n-dimensional projective 
geometry 

• Consequence: 
– 4 chromaticity points are 

enough to determine the 
transformation from one 
colour system to another one
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Projective geometry

• In 3D space, we will use 3D 
projective geometry

• Transformations are 4x4 
invertible matrices

• Thus, transforming (x,y,z,t) 
into (x’,y’,z’,t’): 

• The inverse is easy:
if (x’,y’,z’,t’) can be rewritten 
as (x”,y”,z”,1) by putting
x”=x’/t’, y”=x’/t’, z”=z’/t’, and

these are called the 
projective transformations
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Geometrical theory of optical imaging

• In an ideal system, a 
perfectly focused image 
would form on the image 
plane

• Sharp image point: all rays 
that originate from a point in 
object space can be refracted 
so that they convey to a 
single point in image space

• Sharp image: sharp at all 
image points

• This is not the case in 
typical photographic images



5/14/19 12

A typical optical system

• Imaging systems are complex:
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Optical Image Formation

• Images are formed by focusing 
light onto a sensor

• On real life, not all the light 
available can be collected onto 
the sensor

• Because camera systems collect 
only a part of the wavefront, 
diffraction will limit the optical 
imaging system

• If sensors are large enough WRT 
wavelength, diffraction can be 
neglected, and geometrical 
optics can be used

• In geometric optics, the following 
things are considered valid:
– Fermat’s principle
– Snell’s law
– Eikonal equation
– Ray equation

• Consider a point light source: 
rays emanating from it will 
diverge

• We can call the source a focus of 
a bundle of rays

• If a ray bundle with some optical 
system can be made to 
converge to a single point we call 
this point a focus point.
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Optical Image Formation

• Stigmatic (=sharp) optical 
system: A ray bundle 
generated at a point P0 can 
be made entirely converge to 
another point P1.

• P0, P1 conjugate points:
reversing their roles a perfect 
image of P1 would be created 
at P0.

• If the rays instead converge 
to a small area, blur occurs 
and the image is not perfect

• An optical system may allow 
points nearby P0 to be 
stigmatically imaged to points 
that are nearby P1.

• In Ideal optical system, the 
region of points that are 
stigmatically imaged is 
called object space

• The region of points into 
which object space is 
stigmatically imaged is 
called image space.

• Both these spaces are 3D
• Perfect image: a curve in 

object space maps to an 
identical curve in image 
space.
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Absolute instruments

• An optical system that is 
stigmatic and perfect is called 
an absolute instrument.

• For absolute instruments, 
following applies:
– Maxwell’s theorem for 

absolute instruments:
the optical length of any 
curve in object space equals 
the optical length of its 
image.

– Charatheodory’s theorem: 
the mapping between object 
and image space of an 
absolute instrument is either 
a projective transformation, 
an inversion, or a 
combination of both

• Restrictions on absolute 
instruments are too heavy

• In most practical imaging 
systems, the image space is 
a part of a plane or of a 
surface and is called the 
image plane.
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Imaging Geometry: first-order optics

• Assumption: the optical imaging 
system is such that all rays only 
make a small angle  WRT a 
reference axis

• Such rays are called paraxial
• In such systems, sinus and 

cosinus can be approximated:
– sin()≈
– cos()≈1

• Linear optics
• Additionally, all optical elements 

are arranged along a reference 
axis, called optical axis.

• And all elements are rotationally 
symmetric WRT optical axis

• This is called Gaussian, or 
paraxial, or first-order optics

• Imaging can be here approximated 
through projective transformations

• Object point P=(px,py,pz)T maps to 
P’=(p’x,p’y,p’z)T through

in homogenous coordinates and 
through symmetry we can write

z0,z’0:focal points
f,f’: focal lengths

• The 3D position of the transformed 
point is found by dividing by the 
homogeneous coordinate:
   P’=(p’x/p’w,p’y/p’w,p’z/p’w)
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Imaging geometry

• The optical system sits 
somewhere between P and P’ 
and is centered around the z 
axis

• Right handed coords pointed as 
z (optical axis)

• y points up

• The x = 0-plane is called 
meridional plane

• Rays lying in this plane are called 
meridional rays.

• All other rays called skew rays.
• Meridional rays passing through 

an optical system stay in the 
meridional plane.
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Imaging geometry

• For an isotropic system 
(rotationally symmetric), one can 
drop the x coordinate

• The perspective becomes
Newton’s equation

and the z is given by

• This equation is the perspective 
transformation for a pinhole 
camera

• Pinhole camera: small hole in a 
surface separating object from 
image space 
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Imaging geometry

• Several points are important:
– Object focal point (front focal 

point) F=(0,0,z0)T

– Image focal point (back focal 
point) F’=(0,0,z’0)T

– Object principal point (front 
principal point) H=(0,0,z0+f)T.
The plane // to xy passing 
through H is called object 
principal plane

• Objects on the principal plane are 
imaged with a magnification of 1.

• Image principal point H’=(0,0,z’0+f’)T

• Object nodal point N=(0,0,z0-f’)T

a ray passing through N at angle  
with the optical axis will pass through 
N’ at the same angle

• Image nodal point N’=(0,0,z’0-f)



5/14/19 20

Imaging geometry

• In a real system, the radius of the 
lens is limited

• Thus only a portion of the light 
emitted by the light source will reach 
the image

• The smallest diameter through which 
light passes is determined by the 
lens or an adjustable diaphragm 
(aperture stop)

• The element limiting the angular 
extent of the object to be imaged is 
called field stop.

• Field of view.
• Entrance pupil: aperture seen by a 

point on optical axis and on object
– Size determined by aperture + 

lenses between obj and aperture 
stop

• Exit pupil: aperture seen from the 
image plane through any lenses 
located between aperture and image 
plane

• Ratio entrance/exit pupil: pupil 
magnification

• Chief ray: start from any off-axis 
point on the object and going through 
center of aperture stop

• Marginal ray: starts from on axis 
point on object and passes through 
entrance pupil
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Imaging radiometry

• A camera is:
optical system + sensor

• Sensor measures image 
irradiance Ee resulting from 
scene radiance Le incident 
through optical system 

• We now want to study their 
relationship

• Following assumptions are 
made:
– Object distance large with 

respect to focal length
– Ee proportional to entrance 

pupil
– Ee inversionally proportonal 

to square of focal length f2.
This because lateral 
magnification is proportional 
to focal length: the longer the 
focal length, the larger the 
area covered by the image
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Imaging radiometry

• Differential area dA, off-axis in 
the object plane, projecting to a 
corresponding differential area 
dA  on image plane′

• Between these areas there is the 
optical system

• Chief ray from dA makes angle  
with optical axis.

• s distance dA entrance pupil
• h: distance from optical axis
• d: radius entrance pupil
• d: diff. area on entrance pupil 

at distance r from optical axis
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Imaging radiometry

• We want to integrate over 
entrance pupil, i.e. sum d  

• Vector v from dA to d:

• v makes an angle  with optical 
axis, computable from
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Imaging radiometry

• If dA is lambertian then the flux 
incident into dA’ is 

• Similarly for quantities at the exit 
pupil (indicated with ‘)

‘
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Imaging radiometry

• If the optical system has no light 
losses, flux at entrance and exit 
pupils are the same:

• This is equivalent to

• Similarly for quantities at the 
exit pupil (indicated with ‘)

‘
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Imaging radiometry

• Call:
– n refraction index at object plane
– n’ refraction index at image 

plane
• Then:

where

Image Irradiance Equation

• IIE is general, but hard to 
compute

• It can be simplified for certain 
cases: for example for on-axis 
imaging, as well as for off-axis 
imaging
– Object distance much larger 

than entrance pupil 

‘
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On axis image irradiance

• When object of interest is on 
optical axis, then h=h’=0.
The equation simplifies to:

Consider the cone spanned by 
the exit pupil as the base and the 
on-axis point on the image plane 
as the apex:

• then the sine of the half-angle β of 
this cone is given by:

substituting:

• n’ sin() is called numerical aperture
• E’e is proportional to numerical 

aperture: the larger the aperture, the 
lighter the image (speed of system)

• A related measure is the relative 
aperture F (f-number):

• If image point at infinity, then one can 
assume distance between image 
plane and exit pupil s  = image focal ′
length f′

• And  ≈ tan-1(d’/f’) so relative 
aperture becomes
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On axis image irradiance

• Using pupil magnification 
md=d/d’ we can rewrite as

if object and image plane are in 
air, then refraction index is 1

• If magnification factor is close to 
1, then relative aperture for 
object at infinity can be 
approximated: 

where D=diameter of entrance 
pupil

• An alternative notation for the f-
number is f/N, where N is 
replaced by f/D

• So, for a lens of focal length of 
50mm and aperture of 8.9mm, 
the f-number is written as f/5.6.

• Immage irradiance can be 
written as:

notice: D2/4 = area of entrance 
pupil
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Off axis image irradiance

• For objects not on optical axis we 
can assume distance to entrance 
pupil much bigger than entrance 
pupil radius (s d): irradiance is ≫
approximated as:

look at picture: cosine of off axis 
angle  is 

thus image irradiance becomes

now dA/dA’ is related to lateral 
magnification of the lens m through

• So:

lateral magnification satisfies
thus

or in terms of f-number

for m=2, mp=1, refraction at 
image is 1, so the falloff is cos4 

‘
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Off axis image irradiance

• The consequence? Light falloff!
• Modern lenses tend to perform better than cos4
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Vignetting

• For simple opt.sys. as in picture 
the dimension of lenses impose 
an aperture

• The cross-section of aperture 
depends on which point in object 
plane is used

• Further off axis=smaller cross-
section

• So, less light arrives to image 
space, so additional fall-off 
called vignetting

• Amount depends on distance to 
optical axis

• We introduce 
– spatial dependency on points in 

the object plane (x,y) and 
corresponding points on the 
image plane (x’,y’),

– attenuation factor V (x  , ′ y  ) that ′
takes vignetting into 
consideration

• Irradiance becomes:
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Glare
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Glare

• Optical systems have many 
imperfections not taken into 
account by the irradiance 
equation

• Lens barrel and aperture blades 
might scatter light, so some light 
will be smeared all over the 
image plane: veiling glare or 
lens flare

• Frequent by looking at light 
sources

• Others might result from 
reflections inside the lens

• Modeling glare for the irradiance 
can be done by adding a glare 
function g(x’,y’)

the more components a lens 
has, the more prone it is to glare

• Especially true in zoom lenses



End

• Thank you for listening!
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