Fundamentals of Imaging 2-Human vision + Photometry + Colorimetry

Prof. Dr. Charles A. Wüthrich, Fakultät Medien, Medieninformatik Bauhaus-Universität Weimar caw AT medien.uni-weimar.de

Today's lesson

- The human visual system:
 - Anatomy
 - Nerves and models
- Photometry
- Colorimetry
 - Colour primaries
 - Chromaticity diagrams

The head

- A skull contains 4 cavities
 - Cranial cavity (houses brain)
 - Nasal cavity
 - Orbits
 - Oral cavity

 The orbits are roughly quadrilateral pyramids, with a nerve terminals through

- They house the eyes and their muscles
- Head parts location is named as here right

The eye

- Eyes are used for
 - Photoreception
 - Communication of the resulting action potentials to the brain
- Two spheres:
 - Cornea (∅15.6mm)
 - Sclera (Ø23mm)
- There are 3 layers:
 - outer corneoscleral envelope
 - uveal tract
 - inner neural layer
- Outer muscles attach to robust corneosclerical envelope
- uveal tract (uvea):
 - Iris + ciliary body + choroid has two openings:
 - In front the the pupil
 - At the back: the optic nerve canal

- Innermost is the retina, which has two layers:
 - inner neurosensory retina
 - retinal pigment epithelium
- Transparent parts:
 - aqueous humor
 - lens

Fakultät Medien

Eye movement

- Visual acuity is best at the fovea:
 - We need to move our eyes so objects of interest project on it (gaze shifting).
- Eyes can move 45° in each direction, bust mostly not more than 20°.
- Objects outside of the 20° are tracked by combining head and eye movement.
- Once the object of interest is focused small eye movements focus on its detail

Cornea, iris, lens, vitreous body

- The cornea is responsible for eye focusing
- It is composed of fibrils, which are arranged in parallel rows, canceling the diffraction effect
- The *iris* has two muscles, capable of dilating it or shrinking it, from 1 mm to 8 mm.
- This is used to control the pupil, which controls the amount of light entering the eye.
- The pupil size can be adjusted at 4 Hz.
- Behind the pupil there is the lens, which in case it is not regular leads to astigmatismus, and chromatic aberrations
- The lens filters out UV light.
- Behind the lens, the light travels thorugh the vitreous body.

The retina

- At the back end of the eye, the photoreceptor parts are on the retina
- In the retina, where the optical nerve is, there is a blind spot for vision
- Photoreceptors are spread on the retina, more densely around the macula, which is the point of maximum visual acuity.
- Eyes sample the environment continously, so that the macula can perceive image detail

The retina

- At the back end of the eye, the retina has embedded photoreceptors
- The photoreceptors are of two types: rods and cones
- Rods are responsible for light intensity (500-550nm)
- Cones for colour, with three types of different wavelength sensitivity
- Cones are sensitive to different wavelengths but less sensitive than rods
- Vision works differently from day (cones) to night (rods)

Rods

- Rods are packed on a hexagonal pattern
- They contain a visual pigment called rhodopsin
- Peak sensitivity at the wavelength of 496nm
- Whenever a molecule of rhodopsin absorbs a photon, a chemical reaction occurs (bleaching), preventing the molecule to absorb other photons.
- After some time, the chemical reaction is reversed, and the rod is ready to sense again
- This reverse operation is quite slow, (ca. 5 minutes) but not as slow as our dark adaptation (time it needs to get used to dark)

Nerve

Cones

- Also cones have a molecule sensitive to light (opsine)
- They are subject to bleaching and regeneration like the rods.
- They are sensitive to different wavelengths, and can be classified as L, M and S cones:
 - S stands for short wavelength
 - M for medium
 - L for long
- Basically, they are responsible for color viewing

Cones

- S cones are less dense than M and L cones
- They are absent at the fovea, and packed elsewhere in a regular pattern.
- The reason for this probably lies in the much thinner spectral light sensitivity of the S cones: humans need visual acuity where they focus, and this is better in the L and M cones.
- M and L cones are placed more or less at random

From the sensors to the brain

- The signals perceived from the rods and cones are converted into nerve signals and transmitted separately to the visual cortex in the brain
- Parts of the signals are sent to the right hand of the brain, other parts to the left side.
- The study of the physical phenomena in the brain after receiving the nervous visual stimuli is at its infancy
- New technologies, such as MRT and PET scans give the first clues, but the phenomenon is too complex to be understood fast.
- There are a few different theories available, all of them with their advantages and disadvantages.
- Often, results are integrated with psychophysical experiments.

Fibers from the temporal retina (nasal visual field) do not cross

Fibers from the nasal retina (temporal visual field) cross to the contralateral side

Modeling the human retina

- All displays and rendering methods produce images ultimately perceived by humans.
- A complete model could help building better devices.
- In rendering, such a model could help to point out which parts of an image necessitates more detail.
- Deering presented a model taking into account:
 - Eye optics
 - Photoreceptor mosaic
 - Transduction of photons by the cones
- He presented a new algorithm for synthetizing artificial retinas.
 - T Low pass filter with time constant τ
 1/β Static filter
 Divisive feedback
 Subtractive feedback

- Van Hateren presented a model for cones capable of predicting a wide range of experimental measurements.
- The model bases on filters:
 - temporal low-pass filters
 - static linear and non-linear filters
 - divisive feedback loops
- Processing functions are cascaded with flow diagrams.

Fakultät Medien

Further readings

- I hereby skip the psychophysiology of human vision, which you can get taught at the "Wahrnehmungskurs" im Bachelor
- We strongly recommend, if you have interest in this subject, to take a look at the following readings and sites:
 - Hubell's book "Eye, Brain and Vision" http://neuro.harvard.edu/site/dh/
 - Webvision site: http://webvision.med.utah.edu

Photometry

- In the last set of slides we measured light as power or energy (radiometry).
- This does not take into account the perceptual characteristics of our visual system.
 - For example, we are differently sensitive to different wavelengths (= colours).
- Light travel to our eyes, and are transformed in signals and transmitted to the brain, which interprets them.

- The second form of the measuring of radiation is concerned only with energy viewable by the human visual system, and is called *photometry*.
- Photometry deals with measurements of visible light in terms of its effectiveness to produce the brightness sensation in the human visual system.
- Photometry is basically radiometry weighted by the sensitivity of the human eye.
- Measuring visual quantities of light is complicated because light stimuli of different spectral compositions produce complex perceptions of light.
- It is not easy (if not impossible) to order these different color sensations along a single, intensive scale.

Photometry

- As we know, rods and cones are responsible for our vision
- In first approximation, they operate at different illumination levels
- With low light, only rods are responsible: *scotopic vision*.
- With high light, only cones are used: photopic vision.
- In the transition between low and high light, both are responsible: mesotic vision.
- Peak luminous efficiency frequency changes between scotopic and mesotic vision (Purkinje shift).
- Here a graph of the CIE luminous efficiency function
- The dimmer the light, the more red objects (long wavelength) get darker, and blue objects (short wavelength) get less dark.

Photometry

- Monochromatic lights of different wavelengths, but the same power, do not produce equal brightness or luminous sensation.
- The problem is that more photoreceptors are responsible for the brightness.
- So matching light quantity for coloured light is a problem.
- How does one do it?
 - Step by step matching: match brightness in small wavelength steps: e.g. 500nm, 505 nm, ...
 - Temporal comparison: lights of 2 wavelengths are presented in rapid succession: when flickering is minimum, the intensities match

- Other methods have been used for matching experiments.
- Some laws have been derived too (Grassmann laws):
 - Symmetry law:

 If colour stimulus A matches stimulus B, then stimulus B matches stimulus A
 - Transitivity law:
 If A matches B and B matches C,
 then A matches C
 - Proportionality law: If A matches B, then for a factor α, αA matches αB
 - Additivity law:
 If A matches B and C matches D,
 then (A ⊕ C) matches (B ⊕ D)
 ⊕ : additive colour mixture

Spectral luminous efficiency function

- Meaures the relative efficiency of light of various wavelengths to produce a luminous sensation
- Works for additive systems
- First proposal: CIE 1924
- Corrected by Judd in 1951 to map better behaviour at law wavelengths

Spectral luminous efficiency function

- The terms radiant flux and radiant power Φ_c (unit in watt, W) are synonyms for power emitted, transferred, or received in the form of radiation
- The spectral version of the radiant flux is called the spectral radiant flux $\Phi_{c\lambda}$.
- For photopic vision, the luminous flux $\Phi_{\rm v}$ of a radiation whose spectral distribution of radiant flux is $\Phi_{\rm c,\lambda}(\lambda)$, can be expressed by the equation ${}_{c_{830nm}}$

 $\Phi_v = K_m \int_{360nm}^{830nm} \Phi_{c,\lambda}(\lambda) V(\lambda) d\lambda$

where K_m = maximum spectral luminous efficacy for photopic vision =683.002 lumens / Watt

Similarly, for scotopic vision

$$\Phi'_{v} = K'_{m} \int_{360nm}^{830nm} \Phi_{c,\lambda}(\lambda) V'(\lambda) d\lambda$$

where the constant K'_m is 1700.06 lumens/Watt

 The K factors are chosen so that the wavelenth 555.016 nm has the same luminous flux for photopic and scotopic vision

Efficiency for photopic (K) and scotopic (K') vision

Colorimetry

- Colour is a purely psychological phenomenon
- However, it can be measured and quantifed
- Colorimetry is the science of colour measurement and description
- We have already seen
 Grassman's laws for additive
 colour matching
 - Symmetry law,
 - Transitive law,
 - Proportionality law,
 - Additivity law
- Additive colour mixing means adding the spectral power distributions of radiant light

Colorimetry

- Additive color mixing is only valid for adding light
- They do not take into account the following factors:
 - Dependence of the observational conditions on a match
 - Observer adaptation state: a match might not be one when two stimuli are viewed under different conditions
 - Dependence of a match for a given observer: humans are different. What for one observer is a match, might not be one for another observer.

- Of course it would be nice if one could derive colour perception from the spectral sensitivities of cone photoreceptors
- However, this is difficult to apply because the visual system does more than process pure signals
- A simple example: chromatic adaptation
 - Fix the cross in the upper picture for 20 seconds,
 - then fix the cross on the image below

Colour differences are gone!

Visual colour matching

- If we knew the cone responses, it would be easy to specify color matches in terms of integrated responses to radiant power stimuli.
- For each of the three cone types, the radiant power of the stimulus is multiplied on a wavelength- by-wavelength basis with the cone spectral sensitivity, and then the response is integrated across all wavelengths.

$$L_1 = \int_{\lambda} \Phi(\lambda) L(\lambda) d\lambda$$
 $M_1 = \int_{\lambda} \Phi(\lambda) M(\lambda) d\lambda$
 $S_1 = \int_{\lambda} \Phi(\lambda) S(\lambda) d\lambda$

- Where
 - L,M and S are the relative cone spectral sensitivities,
 - —
 Φ the power distribution of the stimulus
- These integrals can be seen as tristimulus values

Visual colour matching

- Cone sensitivity curves show that our visual system is optimized for perceiving colour differences
- This is why the sensitivity curves overlap
- If they did not overlap, we would not have two or three types of cone sensing light and we would not be able to perceive colors well

Visual colour matching

- In fact, cones work as if they would compute the integral of the light signal
- This principle, called univariance, is visible in the picture
- Two monochrome light sources achieve same stimulus on S cones
- However, M and L cones have different responses on the two signals
- However, due to the fact that only three sensors are present, signals with very different spectral distribution can be still perceived as the same colour (metamerism)
 - This when their integral is the same
- We use this principle it every day when we reproduce colour
 - Print
 - Display
 - Photography

Colour matching functions

- In a simple experiment, it is possible to perform colour matching experiments by comparing side by side two different projections of colour
- The user can then tweak projector intensities to match the colour
- In the reference side, light is added to unsaturate the colors
- R(r)+G(g)+B(b)= $\lambda-R(r_2)-G(g_2)-B(b_2)$
- Similar experiments were performed by Wright and Guild in the 20s.
- They led to the spectral tristimulus values known as CIE color matching functions $\bar{r}(\lambda), \bar{g}(\lambda), \bar{b}(\lambda)$

4/22/19

Colour matching functions

- In 1931 the international standard committee CIE
 - took the data of two independent experiments performed by Wight and Guild
 - found them in agreement, and
 - averaged them to obtain the spectral tristimulus values for the three monocromatic primaries in the picture.
- The curves have to be read wavelength wise: amount of primaries that generates colour match.
 - Can be therefore seen as colour matching functions
 - Colour matches can be computed by integrating on each of the functions for R,G and B, e.g.

$$R = \int_{\lambda} \Phi(\lambda) \bar{r}(\lambda) d\lambda \quad G = \int_{\lambda} \Phi(\lambda) \bar{g}(\lambda) d\lambda \ B = \int_{\lambda} \Phi(\lambda) \bar{b}(\lambda) d\lambda$$

- Notice that one of the curves has negative values.
- Of course, it is impossble to have negative colour sources.
- However, by adding a fourth source to decrease saturation, one can do this
- Another way to think about the negative tristimulus values, is that the particular monochromatic illumination is outside the gamut of the primaries used in the matching experiment.

Fakultät Medien

A second standard

- With the ability to compute the RGB values with the integral functions one can eliminate the need to do experiments.
- Colors are the same if

$$\int_{\lambda} \Phi_{1}(\lambda) \bar{r}(\lambda) d\lambda = \int_{\lambda} \Phi_{2}(\lambda) \bar{r}(\lambda) d\lambda$$
$$\int_{\lambda} \Phi_{1}(\lambda) \bar{g}(\lambda) d\lambda = \int_{\lambda} \Phi_{2}(\lambda) \bar{g}(\lambda) d\lambda$$
$$\int_{\lambda} \Phi_{1}(\lambda) \bar{b}(\lambda) d\lambda = \int_{\lambda} \Phi_{2}(\lambda) \bar{b}(\lambda) d\lambda$$

- Through this we can match colors
- In 1964 the CIE decided to modify the functional basis with two objectives:
 - having an all positive response
 - having one of the primaries be the photopic luminance response function
- They introduced three new abstract primaries, called

$$\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$$

- The middle of these (y) is the photopic response
- Passing from RGB to XYZ can be done like this:

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{0.17697} \begin{bmatrix} 0.4900 & 0.3100 & 0.2000 \\ 0.17697 & 0.81240 & 0.01063 \\ 0.0000 & 0.0100 & 0.9900 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Correcting with modern experiments

- The color matching functions $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$ were based on experiments done on humans in 1931
- The CIE ordered new colour matching experiments, measuring small field colour matches at 2° and 10°.
- Experiments showed that the 1931 measurings were adequate for smaller fields (2°) but that this should be corrected for larger fields (10°)
- These new experiments are defined the 1964 standard observer, and the corresponding curves are called

$$\bar{x}_{10}(\lambda), \bar{y}_{10}(\lambda), \bar{z}_{10}(\lambda)$$

 Just as before with RGB, we can compute X,Y,Z matches by integrating over the visible spectrum

Computing what we see

- In real life, the colour stimulis $\Phi(\lambda)$ is obtained by multiplying
 - Power distribution of the light source
 - Spectral reflectance of the object (normalized to [0,1])
 - Standard observer values
- ...and integrating over the visible wavelengths

Visible light in XYZ space

- We can treat now x,y,z as coordinates in a colour space
- If we draw the visible spectrum in such space, we get a pretty curve in 3D space.
- The shape of it, however, is pretty complicated as shown below
- However, we can remember that the Y coordinate was photopic response, which is dependent on luminosity, not colour.
- This means that the colour information is not on the Y axis but on the other two axes

Visible light in XYZ space

- If colour does not have anything to do with Y, then let us project onto 2D, i.e. onto the XZ axes.
- This new space contains colour information, but no magnitude information (= luminosity) and is called a chromaticity diagram.
- Chromaticity coordinates are ratios of tristimulus values not containing any magnitude information, and are usually marked in non capital letters:

$$x=X/(X+Y+Z)$$

$$y=Y/(X+Y+Z)$$

$$z=Z/(X+Y+Z)$$
with $x+y+z=1$

 Projection means loss of info, however, it is always possible to describe a full color (not projected) by giving Y and the 2 remaining projection coordinates.

- To add to confusion, the two remaining projection coordinates are called x and y (without bar on top).
- Despite notation, from the 3 variables *Yxy* one can compute all colour information:

$$X=(x/y)Y$$
$$Z=(z/y)Y$$

 Plotting the colours in the xy space results in the shape of the next page

CIE chromaticity diagram

CIE chromaticity diagram

- The purple line does not indicate a color, but just the linear combination of the short and high wavelegth stimuli
- Colors represent points inside (or at the border) of the horseshoe.
- Mixing two colors means moving on the interpolating line between these two colors
- Mixing 3 colors means interpolating in the triangle between these three colors: gamut projection onto xy.
- Picture displays:
 - gamut of 1931 CIE RGB
 - Gamut of typical HDTV (dashed)

CIE chromaticity diagram

- A typical quality display/printer will have in selling prospect a picture of the gamut of the device.
- Gamut might be not only a triangle, but also a convex polygon, in case more than 3 colours are mixed
- For example, this is the case in high end printers

Gamut diagrams

- Notice that gamut really makes sense if it is viewed in 3D
- This due to the absence of the luminance component in the 2D graph

© Canon, Canon Pixma Pro I, 12 ink printer

Uniform chromaticity scale

- One problem in the CIE is the fact that equal distances on the graph do not imply perceptual distances
- In 1976 the CIE proposed to use the u',v' Uniform Chromaticity Scale chromaticity diagram
- Its purpose is to have more uniformly spaced colors
- Areas and distances correspond more to perceptual distances
- Again, it does not contain luminance info
- Mathematically

$$u'=4X/(X+15Y+3Z)$$

 $v'=9Y/(X+15Y+3Z)$

Applications

- Colorimetry forms the basis for colour management systems
- It provides a method for describing color as device independent
- Everyone of you will have experienced that different devices display the same colours differently
- But the original image was device independent!
- In Computer Graphics, sometimes rendering is performed spectral space, according to wavelength

$$\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$$

- Then this is integrated
- The result is a perceptually accurate image on the file

- But the device does not display this!
- One has to apply a transformation of primaries
- For example, a computer screen (CRT) has 3 basic additive colours, as in the picture.

Applications

- Grassman's law work only with linear colour scales
- Unfortunately, displays are rather logarithmic mediated by a gamma function to linearize them (gamma correction)
- Depending on the characteristics of the additive components (e.g. the phosphors) one can establish a relation for the display

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} X_{\text{red}} & X_{\text{green}} & X_{\text{blue}} \\ Y_{\text{red}} & Y_{\text{green}} & Y_{\text{blue}} \\ Z_{\text{red}} & Z_{\text{green}} & Z_{\text{blue}} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 By inverting it, one can obtain the correct RGB to be displayed onto the display

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X_{\text{red}} & X_{\text{green}} & X_{\text{blue}} \\ Y_{\text{red}} & Y_{\text{green}} & Y_{\text{blue}} \\ Z_{\text{red}} & Z_{\text{green}} & Z_{\text{blue}} \end{bmatrix}^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Applications

- Since both input and output have to be normed, we would have to do similar computations for
 - Input devices
 - Output devices
- This to obtain a perceptually sound image...
- ... and correct colour processing

Thank you!

- Thank you for your attention!
- Web pages http://www.uni-weimar.de/medien/cg