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Today’s lesson

• The human visual system:
– Anatomy
– Nerves and models

• Photometry
• Colorimetry

– Colour primaries
– Chromaticity diagrams
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The head

• A skull contains 4 cavities
– Cranial cavity (houses brain)
– Nasal cavity
– Orbits
– Oral cavity

• The orbits are roughly quadrilateral pyramids, with a hole at the tip to let 
nerve terminals through

• They house the 
eyes and their
muscles

• Head parts 
location
is named as
here right
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The eye

• Eyes are used for 
– Photoreception
– Communication of the 

resulting action potentials to 
the brain

• Two spheres:
– Cornea (∅15.6mm)
– Sclera (∅23mm)

• There are 3 layers:
– outer corneoscleral envelope
– uveal tract
– inner neural layer

• Outer muscles attach to robust 
corneosclerical envelope

• uveal tract (uvea):
– Iris + ciliary body + choroid 

has two openings:
• In front the the pupil
• At the back: the optic nerve 

canal

• Innermost is the retina, which has 
two layers:
– inner neurosensory retina
– retinal pigment epithelium

• Transparent parts: 
– aqueous humor
– lens
– vitreous body
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Eye movement

• Visual acuity is best at the 
fovea: 
– We need to move our eyes so 

objects of interest project on it 
(gaze shifting).

• Eyes can move 45° in each 
direction, bust mostly not more 
than 20°.

• Objects outside of the 20° are 
tracked by combining head and 
eye movement.

• Once the object of interest is 
focused small eye movements 
focus on its detail
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Cornea, iris, lens, vitreous body

• The cornea is responsible for eye 
focusing

• It is composed of fibrils, which are 
arranged in parallel rows, canceling 
the diffraction effect

• The iris has two muscles, capable of 
dilating it or shrinking it, from 1 mm 
to 8 mm.

• This is used to control the pupil, 
which controls the amount of light 
entering the eye.

• The pupil size can be adjusted at 4 
Hz.

• Behind the pupil there is the lens, 
which in case it is not regular leads 
to astigmatismus, and chromatic 
aberrations 

• The lens filters out UV light.
• Behind the lens, the light travels 

thorugh the vitreous body.
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The retina

• At the back end of the eye, the 
photoreceptor parts are on the 
retina

• In the retina, where the optical 
nerve is, there is a blind spot for 
vision

• Photoreceptors are spread on 
the retina, more densely around 
the  macula, which is the point 
of maximum visual acuity.

• Eyes sample the environment 
continously, so that the macula 
can perceive image detail

Blind spot
Macula

Optical nerve

Retina

Vitreous
humor

Viewing direction
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The retina

• At the back end of the eye, the retina 
has embedded photoreceptors

• The photoreceptors are of two types: 
rods and cones

• Rods are responsible for light intensity 
(500-550nm)

• Cones for colour, with three types of 
different wavelength sensitivity

• Cones are sensitive to different 
wavelengths but less sensitive than 
rods

• Vision works differently from day 
(cones) to night (rods)

Rods

Cones

Nerve
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Rods

• Rods are packed on a hexagonal 
pattern

• They contain a visual pigment called 
rhodopsin

• Peak sensitivity at the wavelength of 
496nm

• Whenever a molecule of rhodopsin 
absorbs a photon, a chemical reaction 
occurs (bleaching), preventing the 
molecule to absorb other photons.

• After some time, the chemical reaction 
is reversed, and the rod is ready to 
sense again

• This reverse operation is quite slow, (ca. 
5 minutes) but not as slow as our dark 
adaptation (time it needs to get used to 
dark)

Rods

Nerve
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Cones

• Also cones have a molecule 
sensitive to light (opsine) 

• They are subject to bleaching and 
regeneration like the rods.

• They are sensitive to different 
wavelengths, and can be 
classified as L, M and S cones:
– S stands for short wavelength
– M for medium
– L for long

• Basically, they are responsible for 
color viewing

Cones

Nerve
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Cones

• S cones are less dense than M 
and L cones

• They are absent at the fovea, and 
packed elsewhere in a regular 
pattern.

• The reason for this probably lies 
in the much thinner spectral light 
sensitivity of the S cones:
humans need visual acuity where 
they focus, and this is better in 
the L and M cones.

• M and L cones are placed more 
or less at random
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From the sensors to the brain

• The signals perceived from the rods 
and cones are converted into nerve 
signals and transmitted separately to 
the visual cortex in the brain

• Parts of the signals are sent to the right 
hand of the brain, other parts to the left 
side.

• The study of the physical phenomena 
in the brain after receiving the nervous 
visual stimuli is at its infancy

• New technologies, such as MRT and 
PET scans give the first clues, but the 
phenomenon is too complex to be 
understood fast.

• There are a few different theories 
available, all of them with their 
advantages and disadvantages.

• Often, results are integrated with 
psychophysical experiments. 
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Modeling the human retina

• All displays and rendering methods 
produce images ultimately 
perceived by humans.

• A complete model could help 
building better devices.

• In rendering, such a model could 
help to point out which parts of an 
image necessitates more detail.

• Deering presented a model taking 
into account:
– Eye optics
– Photoreceptor mosaic
– Transduction of photons by the 

cones
• He presented a new algorithm for 

synthetizing artificial retinas. 

• Van Hateren presented a model for 
cones capable of predicting a wide 
range of experimental measurements.

• The model bases on filters:
– temporal low-pass filters
– static linear and non-linear filters
– divisive feedback loops

• Processing functions are cascaded with 
flow diagrams. 
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Further readings

• I hereby skip the psychophysiology of human vision, which you 
can get taught at the “Wahrnehmungskurs” im Bachelor

• We strongly recommend, if you have interest in this subject, to 
take a look at the following readings and sites:
– Hubell’s book “Eye, Brain and Vision”

http://neuro.harvard.edu/site/dh/
– Webvision site:

http://webvision.med.utah.edu  

http://neuro.harvard.edu/site/dh/
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Photometry

• In the last set of slides we 
measured light as power or 
energy (radiometry).

• This does not take into account 
the perceptual characteristics of 
our visual system.
– For example, we are differently 

sensitive to different 
wavelengths (= colours).

• Light travel to our eyes, and are 
transformed in signals and 
transmitted to the brain, which 
interprets them.

• The second form of the measuring of 
radiation is concerned only with energy 
viewable by the human visual system, 
and is called photometry.

• Photometry deals with measurements of 
visible light in terms of its effectiveness to 
produce the brightness sensation in the 
human visual system.

• Photometry is basically radiometry 
weighted by the sensitivity of the human 
eye.

• Measuring visual quantities of light is 
complicated because light stimuli of 
different spectral compositions produce 
complex perceptions of light.

•  It is not easy (if not impossible) to order 
these different color sensations along a 
single, intensive scale. 
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Photometry

• As we know, rods and cones are 
responsible for our vision

• In first approximation, they operate at 
different illumination levels

• With low light, only rods are 
responsible: scotopic vision.

• With high light, only cones are used: 
photopic vision.

• In the transition between low and high 
light, both are responsible: mesotic 
vision.

• Peak luminous efficiency frequency 
changes between scotopic and 
mesotic vision (Purkinje shift).

• Here a graph of the CIE luminous 
efficiency function 

• The dimmer the light, the more red 
objects (long wavelength) get darker, 
and blue objects (short wavelength) 
get less dark.
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Photometry

• Monochromatic lights of different 
wavelengths, but the same 
power, do not produce equal 
brightness or luminous 
sensation.

• The problem is that more 
photoreceptors are responsible 
for the brightness.

• So matching light quantity for 
coloured light is a problem.

• How does one do it?
– Step by step matching: match 

brightness in small wavelength 
steps: e.g. 500nm, 505 nm, …

– Temporal comparison: lights of 2 
wavelengths are presented in 
rapid succession: when 
flickering is minimum, the 
intensities match   

• Other methods have been used for 
matching experiments. 

• Some laws have been derived too 
(Grassmann laws):
– Symmetry law: 

If colour stimulus A matches 
stimulus B, then stimulus B 
matches stimulus A

– Transitivity law: 
If A matches B and B matches C, 
then A matches C

– Proportionality law: 
If A matches B, then for a factor , 
A matches B

– Additivity law: 
If A matches B and C matches D, 
then (A  C) matches (B  D)⊕ ⊕
  : additive colour mixture⊕
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Spectral luminous efficiency function

• Meaures the relative 
efficiency of light of various 
wavelengths to produce a 
luminous sensation

• Works for additive systems
• First proposal: CIE 1924
• Corrected by Judd in 1951 to 

map better behaviour at law 
wavelengths   
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Spectral luminous efficiency function

• The terms radiant flux and radiant 
power c  (unit in watt, W) are 
synonyms for power emitted, 
transferred, or received in the 
form of radiation

• The spectral version of the radiant 
flux is called the spectral radiant 
flux c,.

• For photopic vision, the luminous 
flux v of a radiation whose 
spectral distribution of radiant flux 
is c,(), can be expressed by the 
equation

where Km = maximum spectral 
luminous efficacy for photopic 
vision =683.002 lumens / Watt

• Similarly, for scotopic vision

where the constant K’m is 1700.06 
lumens/Watt

• The K factors are chosen so that the 
wavelenth 555.016 nm has the same 
luminous flux for photopic and 
scotopic vision

Efficiency for
photopic (K)
and scotopic
(K’) vision
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Colorimetry

• Colour is a purely psychological 
phenomenon

• However, it can be measured and 
quantifed

• Colorimetry is the science of 
colour measurement and 
description

• We have already seen 
Grassman’s laws for additive 
colour matching
– Symmetry law,
– Transitive law,
– Proportionality law,
– Additivity law

• Additive colour mixing means 
adding the spectral power 
distributions of radiant light
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Colorimetry

• Additive color mixing is only 
valid for adding light

• They do not take into account 
the following factors:
– Dependence of the 

observational conditions on a 
match

– Observer adaptation state: a 
match might not be one when 
two stimuli are viewed under 
different conditions

– Dependence of a match for a 
given observer: humans are 
different. What for one observer 
is a match, might not be one for 
another observer.

• Of course it would be nice if 
one could derive colour 
perception from the spectral 
sensitivities of cone 
photoreceptors

• However, this is difficult to 
apply because the visual 
system does more than 
process pure signals

• A simple example: chromatic 
adaptation
– Fix the cross in the upper 

picture for 20 seconds, 
– then fix the cross on the image 

below





Colour differences
are gone!
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Visual colour matching

• If we knew the cone responses, 
it would be easy to specify color 
matches in terms of integrated 
responses to radiant power 
stimuli.

• For each of the three cone 
types, the radiant power of the 
stimulus is multiplied on a 
wavelength- by-wavelength 
basis with the cone spectral 
sensitivity, and then the 
response is integrated across 
all wavelengths.

• Where 
– L,M and S are the relative 

cone spectral sensitivities, 
–  the power distribution of 

the stimulus
• These integrals can be seen 

as tristimulus values
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Visual colour matching

• Cone sensitivity curves show 
that our visual system is 
optimized for perceiving colour 
differences

• This is why the sensitivity 
curves overlap

• If they did not overlap, we would 
not have two or three types of 
cone sensing light and we 
would not be able to perceive 
colors well
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Visual colour matching

• In fact, cones work as if they would 
compute the integral of the light signal

• This principle, called univariance, is 
visible in the picture

• Two monochrome light sources 
achieve same stimulus on S cones

• However, M and L cones have 
different responses on the two signals

• However, due to the fact that only 
three sensors are present, signals 
with very different spectral distribution 
can be still perceived as the same 
colour (metamerism)
– This when their integral is the same

• We use this principle it every day 
when we reproduce colour
– Print
– Display
– Photography    
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Colour matching functions

• In a simple experiment, it is possible 
to perform colour matching 
experiments by comparing side by 
side two different projections of 
colour

• The user can then tweak projector 
intensities to match the colour

• In the reference side, light is added 
to unsaturate the colors

• R(r)+G(g)+B(b)=
        -R(r2)-G(g2) -B(b2) 

• Similar experiments were performed 
by Wright and Guild in the 20s.

• They led to the spectral tristimulus 
values known as CIE color matching 
functions

referenceTest field



• In 1931 the international standard 
committee CIE 
– took the data of two independent 

experiments performed by Wight 
and Guild

– found them in agreement, and 
– averaged them to obtain the 

spectral tristimulus values for the 
three monocromatic primaries in the 
picture.

• The curves have to be read 
wavelength wise: amount of 
primaries that generates colour 
match.
– Can be therefore seen as colour 

matching functions
– Colour matches can be computed 

by integrating on each of the 
functions for R,G and B, e.g.
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Colour matching functions

• Notice that one of the curves has negative 

values. 
• Of course, it is impossble to have negative 

colour sources. 
• However, by adding a fourth source to 

decrease saturation, one can do this  
• Another way to think about the negative 

tristimulus values, is that the particular 
monochromatic illumination is outside the 
gamut of the primaries used in the matching 
experiment.



• With the ability to compute the RGB values 
with the integral functions one can eliminate 
the need to do experiments.

• Colors are the same if

• Through this we can match colors

• In 1964 the CIE decided to modify the 
functional basis with two objectives:
– having an all positive response
– having one of the primaries be the 

photopic luminance response function
• They introduced three new abstract 

primaries, called
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A second standard

• The middle of these (y) is the photopic 
response

• Passing from RGB to XYZ can be done 
like this:



• The color matching functions 
                        were based on 
experiments done on humans in 
1931

• The CIE ordered new colour 
matching experiments, measuring 
small field colour matches at 2° and 
10°. 

• Experiments showed that the 1931 
measurings were adequate for 
smaller fields (2°) but that this 
should be corrected for larger fields 
(10°)

• These new experiments are defined 
the 1964 standard observer,and the 
corresponding curves are called 
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Correcting with modern experiments

• Just as before with RGB, we can 
compute X,Y,Z matches by integrating 
over the visible spectrum



• In real life, the colour stimulis () is 
obtained by multiplying
– Power distribution of the light source
– Spectral reflectance of the object 

(normalized to [0,1])
– Standard observer values

• …and integrating over the visible 
wavelengths
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Computing what we see



• We can treat now x,y,z as coordinates in a colour space
• If we draw the visible spectrum in such space, we get a pretty curve in 

3D space. 
• The shape of it, however, is pretty complicated as shown below
• However, we can remember that the Y coordinate was photopic 

response, which is dependent on luminosity, not colour.
• This means that the colour information is not on the Y axis but on the 

other two axes
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Visible light in XYZ space



• If colour does not have anything to 
do with Y, then let us project onto 
2D, i.e. onto the XZ axes.

• This new space contains colour 
information, but no magnitude 
information (= luminosity) and is 
called a chromaticity diagram. 

• Chromaticity coordinates are ratios 
of tristimulus values not containing 
any magnitude information, and are 
usually marked in non capital letters:
         x=X/(X+Y+Z)
          y=Y/(X+Y+Z)
          z=Z/(X+Y+Z)
with x+y+z=1

• Projection means loss of info, 
however, it is always possible to 
describe a full color (not projected) 
by giving Y and the 2 remaining 
projection coordinates.
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Visible light in XYZ space

• To add to confusion, the two 
remaining projection coordinates are 
called x and y (without bar on top).

• Despite notation, from the 3 variables 
Yxy one can compute all colour 
information:
        X=(x/y)Y
         Z=(z/y)Y 

• Plotting the colours in the xy space 
results in the shape of the next page
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CIE chromaticity diagram

Purple boundary
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CIE chromaticity diagram

• The purple line does not 
indicate a color, but just the 
linear combination of the short 
and high wavelegth stimuli

• Colors represent points inside 
(or at the border) of the 
horseshoe.

• Mixing two colors means 
moving on the interpolating line 
between these two colors

• Mixing 3 colors means 
interpolating in the triangle 
between these three colors: 
gamut projection onto xy.

• Picture displays: 
– gamut of 1931 CIE RGB
– Gamut of typical HDTV 

(dashed)

435.8nm

546.1nm

700nm
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CIE chromaticity diagram

• A typical quality display/printer 
will have in selling prospect a 
picture of the gamut of the 
device.

• Gamut might be not only a 
triangle, but also a convex 
polygon, in case more than 3 
colours are mixed

• For example, this is the case in 
high end printers
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Gamut diagrams

• Notice that gamut really makes 
sense if it is viewed in 3D

• This due to the absence of the 
luminance component in the 2D 
graph
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Uniform chromaticity scale

• One problem in the CIE is the 
fact that equal distances on the 
graph do not imply perceptual 
distances

• In 1976 the CIE proposed to 
use the u’,v’ Uniform 
Chromaticity Scale 
chromaticity diagram

• Its purpose is to have more 
uniformly spaced colors

• Areas and distances 
correspond more to perceptual 
distances

• Again, it does not contain 
luminance info

• Mathematically
        u’=4X/(X+15Y+3Z)
         v’=9Y/(X+15Y+3Z)

• Or
     u’=4x/(-2x+12y+3)
      v’=9y/(-2x+12y+3)
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Applicatons

• Colorimetry forms the basis for colour 
management systems

• It provides a method for describing 
color as device independent

• Everyone of you will have 
experienced that different devices 
display the same colours differently

• But the original image was device 
independent!

• In Computer Graphics, sometimes 
rendering is performed spectral 
space, according to wavelength

• Then this is integrated
• The result is a perceptually accurate 

image on the file

• But the device does not display this!
• One has to apply a transformation of 

primaries
• For example, a computer screen 

(CRT)  has 3 basic  additive colours, 
as in the picture.
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Applicatons

• Grassman’s law work only with 
linear colour scales

• Unfortunately, displays are 
rather logarithmic mediated by a 
gamma function to linearize 
them (gamma correction)

• Depending on the 
characteristics of the additive 
components (e.g. the 
phosphors) one can establish a 
relation for the display

• By inverting it, one can obtain 
the correct RGB to be displayed 
onto the display
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Applicatons

• Since both input and output 
have to be normed, we would 
have to do similar computations 
for 
– Input devices
– Output devices

• This to obtain a perceptually sound 
image…

• … and correct colour processing
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Thank you!

• Thank you for your attention!
• Web pages

http://www.uni-weimar.de/medien/cg
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