

Innovative nachhaltige Bauwerke durch effiziente Kombination von nachwachsenden Rohstoffen und einfach in Kreisläufe integrierbaren mineralischen Baustoffen in einer Hybrid-Bauweise

Anhang zum Forschungsbericht 2008

Bauhaus-Universität Weimar Professur Holz- und Mauerwerksbau Prof. Dr.-Ing. Karl Rautenstrauch Dr.-Ing. Kay-Uwe Schober Dr.-Ing. Antje Simon Dipl.-Ing. Christian Dorn Dipl.-Ing. Markus Jahreis Dipl.-Ing. Jens Müller Dipl.-Ing. Alexander Stief

Anhang

Inhaltsverzeichnis

Abbil Tabe	dungsve llenverze	rzeichnis eichnis	2 5
A 1	Untersu biogene	chungen an Verbundmaterialien aus mineralischen Baustoffen und en Fasern	7
A 2	Untersu biogene	chungen an Verbundmaterialien aus mineralischen Baustoffen und n Fasern	9
	A 2.1 A 2.2 A 2.3	Beanspruchung parallel zu den Brettlamellen – Verbundfuge mit Lamellenversatz Beanspruchung in Brettlängsrichtung - Verbund mittels Spezialschrauben Beanspruchung in Brettquerrichtung	9 17 29
A 3	Experim großforn	nentelle Versuche zum Trag- und Verformungsverhalten von matigen Wandelementen	. 33
	A 3.1 A 3.2 A 3.3 A 3.4	Hauptversuche Zyklusversuche Vergleichswerte zur Einordnung der Wandsteifigkeit der Hybrid-Wand Modellierung der Schubwände in ANSYS	33 52 54 57
A 4	Experim	nentelle Untersuchungen an hybriden Holzverbund-Deckenelementen	61
	A 4.1 A 4.2 A 4.3	Biegetraglastversuche von Deckenelementen Vorschlag für ein Bemessungskonzept der Hybriddecken Fotodokumentation	61 75 78
A 5	Anschlu	ss- und Detailpunkte für hybride Massivholz-Verbundkonstruktionen	79
	A 5.1 A 5.2	Montage- und Anschlussdetails: Abbildungen Montage und Anschlüsse der Deckenelemente - Alternative Varianten	79 86
A 6	Betrach	tung bauphysikalischer Aspekte	91
	A 6.1 A 6.2 A 6.3	Berechnung des Wärmedurchgangskoeffizienten U Diffusionsberechnung (Glaser-Verfahren nach DIN 4108-3) Instationäre Berechung mit dem Simulationsprogramm Delphin	91 93 96

Abbildungsverzeichnis

Abb. 1:	Holzfasern, behandelt mit Silikonöl	7
Abb. 2:	Bambusfasern, Länge ca. 10 – 20 mm	7
Abb. 3:	Hanffasern, Länge ca. 3 mm	7
Abb. 4:	Holzfasern, behandelt mit wässriger Anhydrit-Lösung	7
Abb. 5:	Druckbelastung bei faserbewehrten Prismen	7
Abb. 6:	Faserverteilung in der Estrichmatrix	7
Abb. 7:	Spannungsverlauf der Versuchsserie SV-1.1-oF	10
Abb. 8:	Spannungsverlauf der Versuchsserie SV-1.1-GF	11
Abb. 9:	Spannungsverlauf der Versuchsserie SV-1.1-HF	12
Abb. 10:	Spannungsverlauf der Versuchsserie SV-1.2-HF	14
Abb. 11:	Spannungsverlauf der Versuchsserie SV-1.3-HF	16
Abb. 12:	Kräfteverlauf der Versuchsserie SV-1.4-oF-oT	18
Abb. 13:	Kräfteverlauf der Versuchsserie SV-1.4-HF-oT	20
Abb. 14:	Kräfteverlauf der Versuchsserie SV-1.4-oF-mT	22
Abb. 15:	Kräfteverlauf der Versuchsserie SV-1.4-HF-mT	24
Abb. 16:	Kräfteverlauf der Versuchsserie SV-1.4-BF-mT	26
Abb. 17:	Kräfteverlauf der Versuchsserie SV-1.5	28
Abb. 18:	Kräfteverlauf der Versuchsserie SV-2.1-HF	30
Abb. 19:	Kräfteverlauf der Versuchsserie SV-2.2-HF	32
Abb. 20:	Versuchsstand Ansicht von vorn	33
Abb. 21:	Probekörper der Serie DG	34
Abb. 22:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-1 und zugehörige	
	Auflast	34
Abb. 23:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-2 und zugehörige	35
Abb. 24:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-3 und zugehörige	00
	Auflast	35
Abb. 25:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-4 und zugehörige	
	Auflast	36
Abb. 26:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-5 und zugehörige	
	Auflast	36
Abb. 27:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-6 und zugehörige	
	Auflast	37
Abb. 28:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-7 und zugehörige	
	Auflast	37
Abb. 29:	Wandsteifigkeiten der Serie DG	38
Abb. 30:	Probekörper der Serie DK	39
Abb. 31:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-1 und zugehörige	20
A h h 20.	Auliasi	39
AUD. 32.	Auflast	40
Abb. 33:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-3 und zugehörige	
	Auflast	40
Abb. 34:	Wandsteifigkeiten der Serie DK	41
Abb. 35:	Probekörper der Serie DK-RS	42
Abb. 36:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-RS und	
	zugehörige Auflast	42
Abb. 37:	Wandsteifigkeiten der Serie DK-RS	43
Abb. 38:	Probekörper der Serie DK-BFU	44

Professur Holz- und Mauerwerksbau

Abb. 39:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-BFU und zugehörige Auflast	44
Abb. 40:	Wandsteifigkeiten der Serie DK-BFU	45
Abb. 41:	Probekörper der Serie DG-PS	. 46
Abb. 42:	Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-PS und	16
Abb 42.	Zugenonge Auliasi	. 40
ADD. 43.	Drahokämen den Carie DC-PS	. 47
ADD. 44.	Propertorper der Serie DG-TL	. 48
ADD. 45:	Widerstandskraπ-Verschiedungs-Diagramm Wandprobe DG-TL-T und zugebörige Auflast	48
Abb 16.	Widerstandskraft Verschiebungs Diagramm Wandprobokörper DG TL 2 und	. 40
ADD. 40.		10
Abb 47.	Wandataifigkaitan dar Saria DC TI	49
ADD. 47.	Wallustelligkeitell der Serie DG-TL	. 49
ADD. 48:	Probekorper der Serie DK-BFU-PS	. 50
ADD. 49:	zugehörige Auflast	50
Abb 50.	Wandsteifigkeiten der Serie DK-BEU-PS	51
Δbb 51	Widerstandskraft-Verschiebungs-Diagramme Wandprobe DK-BEI LPS und	
Abb. 51.		52
Abb 52 [.]	Widerstandskraft-Verschiebungs-Diagramme Wandprobe DG-TL und	. 52
	zugehörige Auflasten	52
Abb 53	Widerstandskraft-Verschiebungs-Diagramme Wandprobe DG-PS und	. 02
7.00.00.	zugehörige Auflasten	53
Abb 51.	Wandscheibe in Tafelbauweise (Prinzinskizze)	51
Abb. 5^{-1}	Schematische Darstellung des Volumenelementes SOI ID45, rechts	
ADD. 33.	Anordnung der Volumonolomonto	57
Abb 56.	Vernetzung der Lamellen (links: free meshing, rechts: manped meshing mit	. 57
ADD. 30.	benutzerdefinierten Einstellungen	59
Abb 57.	Apordpung der Kontaktolomonto CONTA173	50
ADD. 57.	Coometrie der Drobekörner	. 09
	Versuchaufhau Diagoversucha	.01
ADD. 59.	Versuchsaulbau Diegeversuche	. 01
ADD. 60.		ດວ
Abb 61.	Widerstandekraft Verschiebunge Diegramm Piegetraglastversuch	. 02
ADD. 01.		~~
	Deckenprobe HEV-2	. 62
ADD. 62:		~~
	Deckenprobe HEV-3	. 63
Abb. 63:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	~~
	Deckenprobe HEV-4	. 63
Abb. 64:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F5-1	. 64
Abb. 65:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F5-2	. 64
Abb. 66:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F5-3	. 65
Abb. 67:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F10-1	. 66
Abb. 68:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F10-2	. 66
Abb. 69:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-F10-3	. 67
Abb. 70:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	
	Deckenprobe HEV-HF5-1	. 68

Abb.	71:	Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch	68
Abb.	72:	Lokale Biegeelastizitätsmoduln der rohen Brettstapelelemente nach DIN EN	. 00
	70.	408:2004	. 69
ADD.	73:	Stelfigkeitsverlust infolge der Lastwechsel	. 70
ADD.	74:	Bezeichnungen am Verbundquerschnitt	. 71
Abb.	75:	Biegestelfigkeiten der Verbundelemente für den starren, nachgiebigen und ohne Verbund (Vorversuch links, Biegetraglastversuch rechts)	.72
Abb.	76:	Bruchlasten und maximale Bruchdurchbiegungen der Verbundelemente	.74
Abb.	77:	Bezeichnungen am Verbundelement mit alternierenden Lamellenhöhen	.75
Abb.	78:	Deckenelement mit alternierenden Lamellen und seitlichen Einfräsungen als	
		Rohelement (links) und mit Anhydrit-Deckschicht (rechts)	78
Abb	79 [.]	Im Bereich der größten Horizontalverschiebung aufgetrenntes Plattenelement	
/ 100.	10.	(links) und nach dem Versuch abgenommenes Anhydritfragment mit	
		eingehetteten Holzfasern der Brettstapelelement-Oberfläche (im Bild rechts	
		unten) und Bereich der ausgefüllten Fräsung als Anhydrit-Nocke (rechts)	78
Δhh	80.	Ontische Überwachung des Versuchsahlaufes mittels Photogrammetrie an	. 70
ADD.	00.	einem Messfeld in Auflagernäbe (links) und Diskretisierung mit Einite-	
		Elemente Methode (rechts)	78
۸hh	Q1 ·	Hybridbauweise: Übersicht	70
Abb.	01. 02.	Hybridbauweise: Obersicht	00
Abb.	02.	Hybridbauweise: Anschluss Ward an Ward in Etagenebene	Q1
Abb.	0J. Q1.	Hybridbauweise: Anschluss Zwischenwahlu an Wahlu in Elagenebene	. 0 1
ADD.	04.	Wand	. 82
Abb.	85:	Hybridbauweise: Anschluss Deckenstoß und Anschluss an Wand parallel zur	83
Δhh	86.	Hybridbauweise: Anschluss letzte Deckenebene und Dach an Dremnelwand	8/
Abb.	87·	Hybridbauweise: Anschluss leizle Deckenebene und Dach an Dremperwahd	. 0 . . 85
Abb.	07. 88.	Rozett Alu SK	.05
Abb.	00. 90·	Hakanankar	00
Abb.	09.	Prinzindarstellung Refestigung mit Vollgewindeschrauben	. 00
Abb.	90. 01·	Claser Diagramm (Tauperiode) für den Wandquerschnitt in Massivbauweise	03
ADD.	91.	Tomporatury or lauf für den Wandquerschnitt in Massivbauweise	ຸສວ
Abb.	92.	Claser Diagramm (Tauporiodo) für den Wandquerschrift in Hybridbauweise	04
Abb.	93.	Tomporatury or lauf für den Wandquerschrift in Hybridbauweise	04
ADD.	94. 05:	Claser Diagramm (Taupariada) für den Wandquerschnitt in	. 94
ADD.	95.		05
۸hh	06.	Tomperatury orlauf für den Wandauerschnitt in Helzetänderbeuweise	. 90
ADD.	90.	Pendhedingungen Innenklime	. 90
ADD.	97.	Rahubeuingungen Außenklime	. 90
ADD.	90.	Rahubeulingungen Ausenklima	. 90
ADD.	99.	und Außenklima (rechts)	. 97
Abb.	100:	Temperaturverlauf über den Wandquerschnitt in Massivbauweise zu	
		bestimmten Zeitpunkten	. 98
Abb.	101:	Dampfdruckverlauf über den Wandquerschnitt in Massivbauweise zu	
		bestimmten Zeitpunkten	. 98
Abb.	102:	Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten .	. 98
Abb.	103:	Temperaturverlauf über den Hybridwandquerschnitt zu bestimmten	
		Zeitpunkten	. 99
Abb.	104:	Dampfdruckverlauf über den Hybridwandquerschnitt zu bestimmten	-
		Zeitpunkten	. 99
Abb.	105:	Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten.	. 99

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

Abb. 106:	Temperaturverlauf über den Wandquerschnitt in Holzständerbauweise zu	
	bestimmten Zeitpunkten	100
Abb. 107:	Dampfdruckverlauf über den Wandquerschnitt in Holzständerbauweise zu	
	bestimmten Zeitpunkten	100
Abb. 108:	Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten	100

Tabellenverzeichnis

Tab. 1:	Beschreibung der Probekörper SV-1.1-oF	9
Tab. 2:	Maximalwerte für Serie SV-1.1-oF	10
Tab. 3:	Beschreibung der Probekörper SV-1.1-GF	11
Tab. 4:	Maximalwerte für Serie SV-1.1-GF	11
Tab. 5:	Beschreibung der Probekörper SV-1.1-HF	12
Tab. 6:	Maximalwerte für Serie SV-1.1-HF	12
Tab. 7:	Beschreibung der Probekörper SV-1.2-HF	13
Tab. 8:	Maximalwerte für Serie SV-1.2-HF	14
Tab. 9:	Beschreibung der Probekörper SV-1.3-HF	15
Tab. 10:	Maximalwerte für Serie SV-1.3-HF	16
Tab. 11:	Beschreibung der Probekörper SV-1.4-oF-oT	17
Tab. 12:	Maximalwerte für Serie SV-1.4-oF-oT	18
Tab. 13:	Beschreibung der Probekörper SV-1.4-HF-oT	19
Tab. 14:	Maximalwerte für Serie SV-1.4-HF-oT	20
Tab. 15:	Beschreibung der Probekörper SV-1.4-oF-mT	21
Tab. 16:	Maximalwerte für Serie SV-1.4-oF-mT	22
Tab. 17:	Beschreibung der Probekörper SV-1.4-HF-mT	23
Tab. 18:	Maximalwerte für Serie SV-1.4-HF-mT	24
Tab. 19:	Beschreibung der Probekörper SV-1.4-BF-mT	25
Tab. 20:	Maximalwerte für Serie SV-1.4-BF-mT	26
Tab. 21:	Beschreibung der Probekörper SV-1.5-oF-mT und SV-1.5-HF-mT	27
Tab. 22:	Maximalwerte für Serie SV-1.5-oF-mT und SV-1.5-HF-mT	28
Tab. 23:	Beschreibung der Probekörper SV-2.1-HF	29
Tab. 24:	Maximalwerte für Serie SV-2.1-HF	30
Tab. 25:	Beschreibung der Probekörper SV-2.2-HF	31
Tab. 26:	Maximalwerte für Serie SV-2.2-HF	32
Tab. 27:	Übersicht über die Varianten der Wandversuche	33
Tab. 28:	Übersicht über die Varianten der Deckenversuche	61
Tab. 29:	Lokale Biegeelastizitätsmoduln der rohen Brettstapelelemente nach DIN EN 408:2004	69
Tab. 30:	Steifigkeitsverlust infolge der Lastwechsel	70
Tab. 31:	Biegesteifigkeiten für starren und ohne Verbund	71
Tab. 32:	Biegesteifigkeiten der Verbundelemente für den starren, nachgiebigen und	
	ohne Verbund	72
Tab. 33:	Wirksamkeit des Verbundes im Vergleich der lokalen Biegesteifigkeiten	
	(Serienmittelwerte)	73
Tab. 34:	Bruchlasten und maximale Bruchdurchbiegungen der Verbundelemente	74

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 1 Untersuchungen an Verbundmaterialien aus mineralischen Baustoffen und biogenen Fasern

Abb. 1: Holzfasern, behandelt mit Silikonöl

Abb. 3: Hanffasern, Länge ca. 3 mm

Abb. 5:

Druckbelastung bei faserbewehrten Prismen

Abb. 2: Bambusfasern, Länge ca. 10 – 20 mm

Abb. 4: Holzfasern, behandelt mit wässriger Anhydrit-Lösung

Abb. 6: Faserverteilung in der Estrichmatrix

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 2 Untersuchungen an Verbundmaterialien aus mineralischen Baustoffen und biogenen Fasern

A 2.1 Beanspruchung parallel zu den Brettlamellen – Verbundfuge mit Lamellenversatz

Versuchsserie SV-1.1-oF

Verlauf

Bei allen drei Versuchskörpern kam es zu Problemen mit den Kraftaufnehmern. Es traten Differenzen zwischen der Steuereinheit und dem Rechner auf. Wahrscheinliche Ursache war ein Kontaktproblem an einer Steckverbindung zwischen der Steuereinheit und der Prüfmaschine. Weiterhin löste sich bei allen Versuchen während der Belastung jeweils ein Probekörper von der vertikalen Stahlplatte. Eine nicht restlos zu entfernende Farb- bzw. Walzschicht führte bei den ersten Versuchen zum Versagen der Klebeverbindung. Dadurch fand bei dem jeweiligen Probekörper keine kontinuierliche Krafteinleitung über die gesamte Höhe der Proben statt, sondern nur konzentriert an der Oberseite der Proben. Durch die zuvor beschriebenen Trocknungsrisse kam es zu Estrich-Abbrüchen, die bis zu ca. 1/3 der jeweiligen Probekörper umfassten.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm	ohne KMD 100 kN, linker PK löst sich von Stahlplatte	Spannungsrisse an versetzten Lamellen über gesamte Probekörper- länge, 1/3 des Estrichs abgebrochen	65 54 41 30
2	Spannungsrisse an ver- setzten Lamellen, Fugen zwischen Holz und CA- Estrich von ca. 1-2 mm	ohne KMD 100 kN, rechter PK löst sich von Stahlplatte	an linkem Probekörper durch Spannungsriss ca. 1/3 des Estrichs abgebrochen	75 73 65
3	Spannungsrisse an ver- setzten Lamellen, Fugen zwischen Holz und CA- Estrich von ca. 1-2 mm	mit KMD 100 kN, linker PK löst sich von Stahlplatte	an rechtem Probekörper durch Spannungsriss entlang versetzter Lamelle ca. 1/5 des Estrichs abgebrochen	73 62

Tab. 1: Beschreibung der Probekörper SV-1.1-oF

 $A_{\text{Schubfläche, 1.1}}$ = 64.800 mm² x 2 = 129.600 mm²

Tab. 2: Maximalwerte für Serie SV-1.1-oF

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.1-oF-1	65,49	0,51
SV-1.1-oF-2	75,60	0,58
SV-1.1-oF-3	77,16	0,59
Mittelwert [N/mm ²]	72,75	0,56
Standardabweichung [N/mm ²]	5,17	0,04
Variationskoeffizient [%]	7,11	6,36

Abb. 7: Spannungsverlauf der Versuchsserie SV-1.1-oF

Versuchsserie: SV-1.1-GF

Verlauf

Die Beschreibung des Zustandes der einzelnen Probekörper vor Versuchsbeginn und nach Versuchsende ist in der Tabelle zusammengestellt. Auffällig bei dieser Versuchsserie war, dass es eine sehr kontinuierliche Laststeigerung gab und kaum Lastabfälle auftraten. Es traten weiterhin keine Spannungsrisse auf und Abbrüche von Estrichteilen gab es ebenfalls nicht. Lediglich eine leicht klaffende Fuge an der Probenunterseite war bei SV-1.1-GF-3 am Versuchsende feststellbar.

Tab. 3: Beschreibung der Probekörper SV-1.1-GF

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm		keine Spannungsrisse im Estrich, keine Abbrüche	40
2	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm	am Versuchsende wahrscheinlich mit Holz auf Gummi aufgesessen	keine Spannungsrisse im Estrich, keine Abbrüche	-
3	eine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm	links unten klaffende Fuge von ca. 3-4 mm	keine Spannungsrisse im Estrich, keine Abbrüche	47

Versuchswerte

A_{Schubfläche, 1.1}= 64.800 mm² x 2 = 129.600 mm²

Tab. 4: Maximalwerte für Serie SV-1.1-GF

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.1-GF-1	46,68	0,36
SV-1.1-GF-2	45,07	0,35
SV-1.1-GF-3	53,88	0,42
Mittelwert [N/mm ²]	48,54	0,38
Standardabweichung [N/mm ²]	3,83	0,03
Variationskoeffizient [%]	7,89	8,21

Abb. 8: Spannungsverlauf der Versuchsserie SV-1.1-GF

Versuchsserie: SV-1.1-HF

Verlauf

Wie schon bei der Versuchsserie SV-1.1-GF war auch hier eine sehr gleichmäßige Steigerung der Belastung zu verzeichnen. Bei keinem Probekörper kam es zu Lastabfällen, Spannungsrissen oder zum Abbruch von Estrichteilen.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 0,5 mm	gleichmäßiges Schieben bei konstanter Last bis zum Ende, bis auf "Gummi" geschoben	keine Spannungsrisse im Estrich, keine Abbrüche	-
2	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm	am Versuchsende wahrscheinlich mit Holz auf Gummi aufgesessen	keine Spannungsrisse im Estrich, keine Abbrüche	-
3	eine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1-2 mm	bis zum Ende konstant hohe Last, links unten klaffende Fuge von ca. 3- 4 mm	keine Spannungsrisse im Estrich, keine Abbrüche	-

Tab. 5: Beschreibung der Probekörper SV-1.1-HF

Versuchswerte

A_{Schubfläche, 1.1}= 64.800 mm² x 2 = 129.600 mm²

Tab. 6: Maximalwerte für Serie SV-1.1-HF

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.1-HF-1	46,72	0,36
SV-1.1-HF-2	49,57	0,38
SV-1.1-HF-3	44,1	0,34
Mittelwert [N/mm ²]	46,80	0,36
Standardabweichung [N/mm ²]	2,23	0,02
Variationskoeffizient [%]	4,77	4,54

Abb. 9: Spannungsverlauf der Versuchsserie SV-1.1-HF

Versuchsserie: SV-1.2-HF

Verlauf

Auf Grund der größeren Abmessungen der Probekörper kam es nach dem Aufbringen der Estrichschicht und der anschließenden Trocknung zu erheblichen Verformungen mit sich daraus ergebenen Zwängungsbeanspruchungen, welche zu Rissen im Estrich und Fugen zwischen den Materialien von bis zu 4 mm führten (siehe Herstellung und Lagerung - Feuchteverhalten). Bei der Probe SV-1.2-HF-2 führte der Spannungsriss im Estrich sogar zum Abbruch eines Stückes, welches schon im Vorfeld der Belastung entfernt werden musste. Bei der Probe SV-1.2-HF-3 war ebenfalls ein Teil weggebrochen, konnte aber durch den Formschluss der Nocken in den Ausfräsungen am Probekörper verbleiben. Somit waren die Probekörper nicht unerheblich vorgeschädigt.

Der Versuchsverlauf war gekennzeichnet durch beständiges Knacken des Holzes und Lastabfälle, was auf den Verlust des Verbundes zwischen Holz und Estrich, weitere Spannungsrisse an den versetzten Lamellen bzw. das Abscheren der Estrich-Nocken schließen läst. Außerdem bildeten sich im unteren Bereich der Proben klaffende Fugen von ca. 3-4 mm. An einem weggebrochenen Teil der Probe SV-1.2-HF-3 war sehr gut zu erkennen, dass die Estrich-Nocken auf einer Länge von ca. 15 mm zerstört waren, was dem Verschiebungsweg bei diesem Versuch entsprach.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	durchgehender Spannungsriss an versetzter Lamelle, große Fugen zwischen Holz und CA-Estrich von ca. 3-4 mm	ständiges Knacken, mehrere Lastabfälle verbunden mit lautem Knacken (Bruch des Estrichs an versetzten Lamellen), Verdrehung des Holzes zw. Estrich entg. Uhrzeigersinn	auf beiden Seiten an jeder versetzten Lamelle durchgehende Spannungsrisse im Estrich, keine Abbrüche	24 29 31 32 30
2	rechter hinterer Teil Estrich weggebrochen - entfernt, ein Spannungsriss, Fugen zwischen Holz und CA- Estrich von ca. 3-4 mm	weiter aufklaffende Fuge zwischen Estrich und Holz	mehrere Spannungsrisse im Estrich, Abbruch Eckkante vorn unten rechts	29 27
3	Spannungsrisse an versetzten Lamellen, linker hinterer Teil Estrich weggebrochen – hängt aber noch dran, klaffende Fugen zwischen Holz und CA-Estrich von ca. 3-4 mm	bis zum Ende konstant hohe Last, links unten klaffende Fuge von ca. 3-4 mm	Teil Estrich hinten links + vorn rechts wegge- brochen (durchgehende Sprisse von vers. Lamellen), Abscheren der Ausklinkung aus CA nur auf geschobener Länge von ca. 16 mm erfolgt (Foto)	23 28

Tab. 7: Beschreibung der Probekörper SV-1.2-HF

 $A_{\text{Schubfläche, 1.2}}$ = 92.160 mm² x 2 = 184.800 mm²

Tab. 8: Maximalwerte für Serie SV-1.2-HF

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.2-HF-1	33,25	0,18
SV-1.2-HF-2	30,03	0,16
SV-1.2-HF-3	34,95	0,19
Mittelwert [N/mm ²]	32,74	0,18
Standardabweichung [N/mm ²]	2,04	0,01
Variationskoeffizient [%]	6,23	7,06

Abb. 10: Spannungsverlauf der Versuchsserie SV-1.2-HF

Versuchsserie: SV-1.3-HF

Verlauf

Grundsätzlich ist festzustellen, dass bei dieser Versuchsserie vor Versuchsbeginn bedeutend geringere Schädigungen an den einzelnen Proben feststellbar waren, als an der vorangegangenen Serie SV-1.2-HF. An den versetzten Lamellen befanden sich nur kleine Spannungsrisse und die Fugen zwischen dem Holz und dem Estrich betrugen nur ca. 1-2 mm. Während der Belastung war ein beständiges leichtes Knacken und Knistern des Holzes zu hören. In Verbindung mit den Lastabfällen traten Spannungsrisse ausgehend von den versetzten Lamellen bis zu den Estrichoberflächen über die gesamte Höhe des jeweiligen Probekörpers auf. Die dadurch separierten einzelnen Estrichteilstücke lösten sich aber infolge der Verzahnung der Nocken vom restlichen Probeköper nicht ab.

Tab. 9: Beschreibung der Probekörper SV-1.3-HF

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Spannungsrisse, aber Fugen zwischen Holz und CA-Estrich von ca. 1 mm	leichtes Knistern, ab ca. 30 kN Spannungsrisse am Rand	beidseitig vorn Ecken- abbrüche, an versetzter Lamelle hinten rechts durchgehender Span- nungsriss im Estrich,	42 38 32
2	2 kleine Spannungsrisse an vers. Lamellen, Fugen zwischen Holz und CA- Estrich von ca. 1-2 mm aufklaffend	leichtes Knacken, bei ca. 30 kN Spannungsrisse rechts hinten + links vorn, bei 25 kN Spannungriss rechts vorn	an allen versetzten Lamellen durchgehende Spannungsrisse im Estrich	31 28 26 20
3	2 kleine Spannungsrisse an vers. Lamellen, Fugen zw. Holz und CA-Estrich bis zu 3 mm aufklaffend, teilweise 1-2 mm Abstand zwischen Holzlamellen	bei ca. 20 kN Spannungsrisse rechts vorn, links vorn + rechts hinten Spannungsriss etwas später	mehrere Spannungsrisse entlang versetzter Lamellen	35 32 28 23

 $A_{\text{Schubfläche, 1.3}}$ = 92.160 mm² x 2 = 184.800 mm²

Tab. 10: Maximalwerte für Serie SV-1.3-HF

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.3-HF-1	42,14	0,23
SV-1.3-HF-2	31,70	0,17
SV-1.3-HF-3	36,16	0,20
Mittelwert [N/mm ²]	36,67	0,20
Standardabweichung [N/mm ²]	4,28	0,02
Variationskoeffizient [%]	11,66	12,25

Abb. 11: Spannungsverlauf der Versuchsserie SV-1.3-HF

A 2.2 Beanspruchung in Brettlängsrichtung - Verbund mittels Spezialschrauben

Bei den Probekörperserien SV-1.4 und SV-1.5 wurden die jeweiligen Probekörper ohne Stahlplatte direkt aneinander geklebt. Anwendung fand dabei ein EP-Harz, welches mit Sand und Tixotropiermittel angemischt wurde. Da bei diesen Versuchsserien bedeutend höhere Belastungen notwendig waren, wurde statt der bisher eingesetzten 100 kN Kraftmessdose eine mit bis zu 200 kN Nennkraftaufnahme verwendet.

Versuchsserie: SV-1.4-oF-oT

Verlauf

Die Versuchsverläufe bei der Serie SV-1.4-oF-oT waren von vermehrten Knister- und Knackgeräuschen begleitet. Bei den häufigen Lastabfällen zeigten sich unmittelbar im Anschluss erhebliche Risse und Estrichabplatzungen. Zurückzuführen sind diese auf das Versagen des Estrichs um die Schraubenköpfe auf Grund der lokalen Durchstanz-Schubbelastung am Schraubenkopf. Durch die relativ hohen in der Verbundfuge aufnehmbaren Kräfte, kam es infolge des in der mittleren Klebefuge aufzunehmenden Exzentrizitätsmomentes, beginnend von der Unterseite her, zum Aufreißen infolge Querzugbeanspruchung. Durch das stufenweise Versagen des Estrichs auf jeweils einer Probekörperseite traten teilweise Schiefstellungen der Probekörper auf. Beim sich anschließenden stufenweisen Versagen der anderen Seite erfolgte wieder ein Ausgleich.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Vorschädigungen durch Risse oder Fugen	ab 55 kN leichtes Knacken, bei 100 kN Risse im Estrich links, 115 kN: Fuge links gerissen, 130 kN: Fuge rechts gerissen	durch Druckbelastung der Schrauben Aus- brüche des Estrichs	134 124 62
2	keine Vorschädigungen durch Risse oder Fugen	Knacken ab 58 kN, bei 60 kN klaffende Fuge zw. Holz und Estrich links, bei 80 kN aufreißen der Klebefuge, bei 143 kN Versagen des linken Probekörpers, Risse auf rechter Seite	Estrichausbrüche durch Druckbelastung der Schrauben	80 143 122 66
3	keine Vorschädigungen durch Risse oder Fugen	Knacken von ca. 35 bis 50 kN, bei 60 kN reißt mittige Fuge auf, Kohäsionsbruch im Holz bei 70 kN, bei 128 kN versagt linke Seite - Schiefstellung, bei 91 kN Versagen rechts – stellt sich wieder gerade	Estrichausbrüche durch Druckbelastung der Schrauben	128 110 91 56

Tab. 11: Beschreibung der Probekörper SV-1.4-oF-oT

 $A_{\text{Schubfläche, 1.4}}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.4-oF-oT-1	134,26	0,76
SV-1.4-oF-oT-2	143,64	0,81
SV-1.4-oF-oT-3	128,40	0,73
Mittelwert [N/mm ²]	135,43	0,77
Standardabweichung [N/mm ²]	6,28	0,03
Variationskoeffizient [%]	4,63	4,30

Abb. 12: Kräfteverlauf der Versuchsserie SV-1.4-oF-oT

Versuchsserie: SV-1.4-HF-oT

Verlauf

Im Vergleich zu der vorhergehenden Versuchsserie ohne Fasern ergaben sich kaum Unterschiede. Es kam ebenso zu starken Knackgeräuschen und Lastabfällen, die auf ein versagen des Estrichs hindeuten. Nach dem erreichen der Maximalbelastung und dem Zerfall des Estrichs war festzustellen, dass die Proben mit Holzfasern weniger zum feinteiligen zerbröseln neigten.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	eventuell vorgeschädigt, da bei erster Belastung Klebefuge zwischen den Probekörpern versagte, ansonsten keine Risse oder Fugen	70 kN: Knacken, mittlere Klebefuge > 5 mm, 127 kN: Versagen des Estrichs rechts - Schrägstellung, 92 kN: Versagen auf linker Seite	durch Druckbelastung der Schrauben Aus- brüche des Estrichs	74 134 127 92 67
2	eventuell vorgeschädigt, da bei erster Belastung Klebefuge zwischen den Probekörpern versagte, ansonsten keine Risse oder Fugen	60 kN: Knacken, 90 kN: Fuge reißt auf, bei 133 kN Versagen der linken Seite - Schiefstellung, bei 94 kN versagen der rechten Seite	durch Druckbelastung der Schrauben Aus- brüche des Estrichs	133 117 94 62
3	keine Vorschädigungen in Form von Rissen oder Fugen	40 kN: Knacken, bei 75 kN Fuge hinten von unten aufgerissen, bei 125 kN Versagen der linken Fuge, bei 50 kN rechts	durch Druckbelastung der Schrauben Aus- brüche des Estrichs	71 120 85

Tab. 13: Beschreibung der Probekörper SV-1.4-HF-oT

 $A_{\text{Schubfläche, 1.4}}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]	σ [N/mm²]
SV-1.4-HF-oT-1	134,46	0,76
SV-1.4-HF-oT-2	133,97	0,76
SV-1.4-HF-oT-3	120,83	0,69
Mittelwert [N/mm ²]	129,75	0,74
Standardabweichung [N/mm ²]	6,31	0,04
Variationskoeffizient [%]	4,87	4,87

Abb. 13: Kräfteverlauf der Versuchsserie SV-1.4-HF-oT

Versuchsserie: SV-1.4-oF-mT

Verlauf

Bei dieser Serie zeigten sich während des Versuchsverlaufes keine besonderen Abweichungen zu den bisherigen Untersuchungen mit Spezialverbundschrauben. Es traten wieder die plötzlichen Lastabfälle auf, welche das Versagen des Estrichs um die Schraubenköpfe widerspiegeln. Die jeweiligen Beobachtungen sind in der Tabelle zusammengefasst.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	eventuell vorgeschädigt, da bei erster Belastung Klebefuge zwischen den Probekörpern versagte, ansonsten keine Risse oder Fugen	bei ca. 70 kN löste sich Estrich auf linker Seite vom Holz, bei 75 kN Versagen auf rechter Seite	durch Druckbelastung der Schrauben sehr viele Ausbrüche des Estrichs, starkes zerbröseln des Estrichs	56 88 83 75
2	keine Vorschädigungen in Form von Rissen oder Fugen	80 kN: mittlere Fuge reißt auf, 95 kN: Estrich vorn rechts versagt, 64 kN: Versagen links, gleichmäßiges Schieben	nach Trennung: Klebeverbund war nur zu 50% vorhanden, durch Druckbelastung der Schrauben Ausbrüche des Estrichs, starkes zerbröseln des Estrichs	95 79 64
3	keine Vorschädigungen in Form von Rissen oder Fugen	bei 89 kN: mittlere Fuge reißt auf, bei 68 kN löst sich linke und rechte Estrichschicht von Holz	durch Druckbelastung der Schrauben sehr viele Ausbrüche des Estrichs, starkes zerbröseln des Estrichs	89 86 68

Tab. 15: Beschreibung der Probekörper SV-1.4-oF-mT

 $A_{Schubfläche, 1.4}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]
SV-1.4-oF-mT-1	88,62
SV-1.4-oF-mT-2	95,00
SV-1.4-oF-mT-3	89,79
Mittelwert [N/mm ²]	91,14
Standardabweichung [N/mm ²]	2,77
Variationskoeffizient [%]	3,04

Tab. 16: Maximalwerte für Serie SV-1.4-oF-mT

Versuchsserie: SV-1.4-HF-mT

Verlauf

Die Beschreibungen der jeweiligen Probekörper und des Versuchsverlaufes können der Tabelle entnommen werden.

Tab. 17: Beschreibung der Probekörper SV-1.4-HF-mT

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Vorschädigungen in Form von Rissen oder Fugen	50 kN: mittlere Fuge reißt auf, bei 109 kN Versagen der rechten Estrichschicht, bei 74 kN Versagen der linken Schicht	durch Druckbelastung der Schrauben viele Ausbrüche des Estrichs	64 109 82 74
2	keine Vorschädigungen in Form von Rissen oder Fugen	48 kN: Knacken, ab 95 kN: stetiges Knistern, 108 kN: starker Lastabfall, Versagen links – Schiefstellung, PK sitzt rechts auf – Messung beendet	durch Druckbelastung der Schrauben viele Ausbrüche des Estrichs	108
3	keine Vorschädigungen in Form von Rissen oder Fugen	47 kN: Knacken, 62 kN: mittlere Fuge klafft auf > 5 mm, 107 kN: Versagen des Estrichs links, 63 kN: Versagen rechts	durch Druckbelastung der Schrauben viele Ausbrüche des Estrichs	107 84 65

 $A_{\text{Schubfläche, 1.4}}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]
SV-1.4-HF-mT-1	109,11
SV-1.4-HF-mT-2	108,29
SV-1.4-HF-mT-3	107,48
Mittelwert [N/mm ²]	108,29
Standardabweichung [N/mm ²]	0,67
Variationskoeffizient [%]	0,61

Tab. 18: Maximalwerte für Serie SV-1.4-HF-mT

Abb. 15: Kräfteverlauf der Versuchsserie SV-1.4-HF-mT

Versuchsserie: SV-1.4-BF-mT

Verlauf

Bei dieser Versuchserie wurden die bei den Baustoffuntersuchungen als günstig bewerteten Bambusfasern eingesetzt, um zu prüfen inwieweit längere Fasern zu einer Verbesserung der Aufnahme lokaler Spannungskonzentrationen im Estrich beitragen können. Wie die gemessenen Kraft-Weg-Diagramme zeigen, sind weniger Lastabfälle (respektive lokale Versagensmechanismen) zu verzeichnen. Andererseits wurden aber auch längst nicht die Versagenslasten der vergleichbaren Serien mit Holzfaserzugabe erreicht. Die Versagensmechanismen waren dagegen weitgehend identisch.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	keine Vorschädigungen	72 kN: Knacken mit	große Risse und	
	durch Risse oder Fugen	Lastabfall, Risse rechts	Abplatzungen,	
		oben, Probekörper	Ausbrüche durch	72
		verdreht sich, links am	Schrauben-	49
		Ende auf Stahlplatte	Druckbelastung	
		aufliegend		
2	keine Vorschädigungen	schlagartiger Lastabfall	große Risse und	
	durch Risse oder Fugen	bei 71 kN und Versagen	Abplatzungen,	71
	_	der rechten Seite, bei 59	Ausbrüche durch	59
		kN auch auf linker Seite	Schrauben-	33
			Druckbelastung	
3	keine Vorschädigungen	Knacken ab 60 kN, bei	große Risse und	
	durch Risse oder Fugen	77 kN Lastabfall und	Abplatzungen,	77
	_	große Risse auf rechter	Ausbrüche durch	56
		Seite, Verdrehung,	Schrauben-	38
		Versagen auf linker Seite	Druckbelastung	

Tab. 19: Beschreibung der Probekörper SV-1.4-BF-mT

 $A_{\text{Schubfläche, 1.4}}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]
SV-1.4-BF-mT-1	72,23
SV-1.4-BF-mT-2	71,80
SV-1.4-BF-mT-3	77,01
Mittelwert [N/mm ²]	73,68
Standardabweichung [N/mm ²]	2,36
Variationskoeffizient [%]	3,20

Tab. 20: Maximalwerte für Serie SV-1.4-BF-mT

Abb. 16: Kräfteverlauf der Versuchsserie SV-1.4-BF-mT

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen **Ein Eleksen Ein** Institut far Konstruktiven Ingenieurbau

Versuchsserien: SV-1.5-oF-mT, SV-1.5-HF-mT

Versuchsverläufe

Beim Verlauf der Scherversuche ergaben sich keine wesentlichen Veränderungen im Vergleich mit der Versuchsserie SV-1.4. Die eingetretenen Lastabfälle verdeutlichen das Herausziehen der Schrauben aus dem Estrich, wodurch der Verbund geschädigt wird. Die jeweiligen Beschreibungen der Probekörper befinden sich in der nachfolgenden Tabelle.

Probe	Zustand vor Versuchs- beginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
SV-1.5-oF-mT-1	keine Vor- schädigungen durch Risse oder Fugen	erste Risse bei 100 kN, 133 kN: Riß und versagen im Estrich rechts – auf 53 kN, gleichmäßige Verformung und Kraftanstieg bis ca. 80 kN - Schrägstellung	Risse und Abplatzungen, aber bedeutend geringer als bei vorherigen Proben	98 133 113
SV-1.5-oF-mT-2		77 kN: Knacken und Mittelfuge reißt auf, 167 kN links Estrichversagen, großflächiger Ausbruch Estrich links bei 161 kN	Risse und Abplatzungen, aber bedeutend geringer als bei vorherigen Proben	104 167 161 92 71
SV-1.5-HF-mT-2		89 kN: versagen vorn rechts, versagen im Holzdübel mit Rissaufweitung,140 kN: versagen links	Risse und Bruchstücke, aber nochmals geringere Zerfallserscheinungen als bei der vorherigen Serie ohne Fasern	89 140 131 98
SV-1.5-HF-mT-2		bei 90 kN Riss im Holzdübel, 133 kN: versagen des Estrichs links, bei 106 kN versagen rechts	Risse und Bruchstücke, aber nochmals geringere Zerfallserscheinungen als bei der vorherigen Serie ohne Fasern	133 117 106 65

Tab. 21: Beschreibung der Probekörper SV-1.5-oF-mT und SV-1.5-HF-mT

 $A_{\text{Schubfläche, 1.5}}$ = 88.160 mm² x 2 = 176.320 mm²

Probe	F _{max} [kN]
SV-1.5-oF-mT-1	133,63
SV-1.5-oF-mT-2	167,56
SV-1.5-HF-mT-1	140,80
SV-1.5-HF-mT-2	133,77

Tab. 22: Maximalwerte für Serie SV-1.5-oF-mT und SV-1.5-HF-mT

Abb. 17: Kräfteverlauf der Versuchsserie SV-1.5

A 2.3 Beanspruchung in Brettquerrichtung

Versuchsserie: SV-2.1-HF

Verlauf

Durch die in Kapitel Herstellung und Lagerung – Feuchteverhalten beschriebenen Verformungen war ein flächiges Kleben der mittleren Stahlplatte zur Kraftübertragung nicht möglich. So konnte nur eine Verklebung an den Außenkanten sichergestellt werden. Für eine flächige Verklebung hätte es erheblich größerer Klebermengen bedurft, was durch die hohen Materialkosten nicht realisierbar war.

Insgesamt betrachtet hatten die Proben der Serie SV-2.1-HF die größten Vorschädigungen. Unter Belastung kam es zum starken Verbiegen oder zum Bruch der versetzten Lamelle, welche anschließend nach außen gedrückt werden. Daraufhin riss der Estrich bis zur Oberfläche durch und hauptsächlich die unteren Teile klappten nach außen weg. Nach der Entlastung trat, vor allem, wenn die versetzten Lamellen verbogen waren, eine starke Rückverformung ein.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	starke Verformung der Holzlamellen, größter Abstand vom Holz zur Stahlplatte = 5 mm, Spannungsriss, oben rechts ca. 4 mm Fuge, sonst 2-3 mm	Knistern und Knackge- räusche, bei ca. 30 kN Spannungsriss an versetzter Lamelle, Risse entlang der Jahrringe	Bruch entlang Jahrringen beidseitig und Verschiebung nach außen	19 15 18
2	starke Verformung der Holzlamellen, Spannungsriss, Fuge unten links ca. 4 mm Fuge, sonst 2-3 mm	Knistern und Knackgeräu- sche, bei ca. 15 kN Spannungsriss an versetzter Lamelle links, bei ca. 18 kN rechts, Abscheren entlang der Jahrringe	wie 1, aber vor Bruch der linken Lamelle starkes Verbiegen, Brüche nicht entlang Jahrringen, nach Entlastung starke Rückverformung	18
3	starke Verformung der Holzlamellen, kein flächiges Anliegen der Stahlplatte, Spannungsriss, unten links ca. 5 mm Fuge, sonst 2-3 mm	an linker Lamelle gebrochen, rechts Spannungsriss bei versetzter Lamelle, davor Estrich weit abklaffend	wie 2, nach Bruch herausdrücken des abgescherten Holzes und wegklappen des Estrichs	18 15

Tab. 23: Beschreibung der Probekörper SV-2.1-HF

Tab. 24: Maximalwerte für Serie SV-2.1-HF

Probe	F _{max} [kN]
SV-2.1-HF-1	19,02
SV-2.1-HF-2	18,83
SV-2.1-HF-3	22,50
Mittelwert [N/mm ²]	20,12
Standardabweichung [N/mm ²]	2,07
Variationskoeffizient [%]	10,27

Versuchsserie: SV-2.2-HF

Verlauf

Alle Proben der Serie SV-2.2-HF waren durch die zuvor beschriebenen Trocknungsprozesse des Holzes insoweit geschädigt, dass ebenfalls kein flächiger Verbund gegeben war. Bei der Belastung zeigten sich ähnliche Schädigungsmechanismen wie bei der Versuchsserie SV-2.1-HF. Zuerst brach an den oberen versetzten Lamellen der Estrich bis zur Außenkante, dann rissen die Lamellen selbst bzw. verbogen sich sehr stark. Infolge dessen wurde der Estrich im unteren Bereich nach außen gedrückt. Zeitversetzt zeigten sich an den unteren versetzten Lamellen die gleichen Versagensmechanismen. Nach der Entlastung kam es zur teilweisen Rückverformung.

Nr.	Zustand vor Versuchsbeginn	Bemerkungen zum Verlauf	Zustand nach Versuchsende	Lastab- fälle [kN]
1	starke Verformung der Holzlamellen, große Spannungsrisse von vers. Lamellen bis zur Außenkante, Fugen ca. 1-2 mm	leichtes Knistern, vers. Lamellen verbiegen sich stark oder brechen, ges. PK stellt sich schief	Estrich an oberen vers. Lamellen durchgebrochen und klappt weg, nach Entlastung starke Rückverformung	44 58 50
2	starke Verformung der Holzlamellen, 1 großer + mehrere kleine Spannungsrisse von vers. Lamellen bis zur Außenkante, Fugen bis ca. 4-5 mm	beständiges Knistern, vers. Lamellen brechen durch und verbiegen sich sehr, linker PK löst sich von Stahlplatte von unten nach oben ab, nach und nach brechen alle vers. Lamellen	Estrich an oberen vers. Lamellen durchgebrochen und klappt weg, nach Entlastung starke Rückverformung	50 42 55
3	leichte Verformung der Holzlamellen, keine Spannungsrisse, Fugen ca. 1-2 mm	zuerst brechen obere vers. Lamellen und verbiegen sich, dann die unteren, Spriss bei vers. Lamelle, danach klafft Estrich weit ab	Estrich an oberen vers. Lamellen durchgebrochen und klappt weg, nach Entlastung starke Rückverformung	34 39 51

Tab. 25: Beschreibung der Probekörper SV-2.2-HF

Tab. 26: Maximalwerte für Serie SV-2.2-HF

Probe	F _{max} [kN]
SV-2.2-HF-1	58,53
SV-2.2-HF-2	56,53
SV-2.2-HF-3	54,84
Mittelwert [N/mm ²]	56,63
Standardabweichung [N/mm ²]	1,85
Variationskoeffizient [%]	3,26

Abb. 19: Kräfteverlauf der Versuchsserie SV-2.2-HF

A 3 Experimentelle Versuche zum Trag- und Verformungsverhalten von großformatigen Wandelementen

A 3.1 Hauptversuche

Anzahl	Serie	Beschreibung
7	DG	Dübel gleichmäßig, roh ¹
3	DK	Dübel konzentriert, roh ¹
1	DK-RS	Dübel konzentriert, roh ¹ , Beplankung mit Rohsperrholzplatte
1	DK-BFU	Dübel konzentriert, roh ¹ , Wandkopf und Wandfuß verstärkt mit
		BFU-Platte
1	DG-PS	Dübel gleichmäßig, mineralische Deckschicht, Putzschiene
2	DG-TL	Dübel gleichmäßig, mineralische Deckschicht, Trapezleiste
1	DK-BFU-PS	Dübel konzentriert, mineralische Deckschicht, Putzschiene,
		Wandkopf und –fuß verstärkt mit BFU-Platte
16		

Tab. 27: Übersicht über die Varianten der Wandversuche

¹ Brettstapelelemente ohne mineralische Deckschicht werden im Folgenden als "roh" bezeichnet.

Abb. 20: Versuchsstand Ansicht von vorn

A 3.1.1 Serie DG

A 3.1.1.1 Aufbau

Abb. 21: Probekörper der Serie DG

A 3.1.1.2 Wandprobekörper DG-1

A 3.1.1.3 Wandprobekörper DG-2

Abb. 23: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-2 und zugehörige Auflast

A 3.1.1.4 Wandprobekörper DG-3

A 3.1.1.5 Wandprobekörper DG-4

Abb. 25: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-4 und zugehörige Auflast

A 3.1.1.6 Wandprobekörper DG-5

A 3.1.1.7 Wandprobekörper DG-6

Abb. 27: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-6 und zugehörige Auflast

A 3.1.1.8 Wandprobekörper DG-7

A 3.1.1.9 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 29: Wandsteifigkeiten der Serie DG

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 3.1.2 Serie DK

A 3.1.2.1 Aufbau

Abb. 30: Probekörper der Serie DK

A 3.1.2.2 Wandprobekörper DK-1

A 3.1.2.3 Wandprobekörper DK-2

Abb. 32: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-2 und zugehörige Auflast

A 3.1.2.4 Wandprobekörper DK-3

Abb. 33: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-3 und zugehörige Auflast

A 3.1.2.5 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 34: Wandsteifigkeiten der Serie DK

A 3.1.3 Serie DK-RS

A 3.1.3.1 Aufbau

Abb. 35: Probekörper der Serie DK-RS

A 3.1.3.3 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 37: Wandsteifigkeiten der Serie DK-RS

A 3.1.4 Serie DK-BFU

A 3.1.4.1 Aufbau

Abb. 38: Probekörper der Serie DK-BFU

A 3.1.4.2 Wandprobekörper DK-BFU

A 3.1.4.3 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 40: Wandsteifigkeiten der Serie DK-BFU

A 3.1.5 Serie DG-PS

A 3.1.5.1 Aufbau

Abb. 41: Probekörper der Serie DG-PS

A 3.1.5.2 Wandprobekörper DG-PS

Abb. 42: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DG-PS und zugehörige Auflast

A 3.1.5.3 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 43: Wandsteifigkeiten der Serie DG-PS

A 3.1.6 Serie DG-TL

A 3.1.6.1 Aufbau

Abb. 44: Probekörper der Serie DG-TL

A 3.1.6.2 Wandprobekörper DG-TL-1

A 3.1.6.3 Wandprobekörper DG-TL-2

Abb. 46: Widerstandskraft-Verschiebungs-Diagramm Wandprobekörper DG-TL-2 und zugehörige Auflast

A 3.1.6.4 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 47: Wandsteifigkeiten der Serie DG-TL

A 3.1.7 Serie DK-BFU-PS

A 3.1.7.1 Aufbau

Abb. 48: Probekörper der Serie DK-BFU-PS

A 3.1.7.2 Wandprobekörper DK-BFU-PS

Abb. 49: Widerstandskraft-Verschiebungs-Diagramm Wandprobe DK-BFU-PS und zugehörige Auflast

A 3.1.7.3 Zusammenstellung der erreichten Wandsteifigkeiten

Abb. 50: Wandsteifigkeiten der Serie DK-BFU-PS

A 3.2 Zyklusversuche

A 3.2.1 Serie DK-BFU-PS

Abb. 51: Widerstandskraft-Verschiebungs-Diagramme Wandprobe DK-BFU-PS und zugehörige Auflasten

A 3.2.2 Serie DG-TL

Abb. 52: Widerstandskraft-Verschiebungs-Diagramme Wandprobe DG-TL und zugehörige Auflasten

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 3.2.3 Serie DG-PS

Abb. 53: Widerstandskraft-Verschiebungs-Diagramme Wandprobe DG-PS und zugehörige Auflasten

A 3.3 Vergleichswerte zur Einordnung der Wandsteifigkeit der Hybrid-Wand

Ermittlung der Steifigkeit einer in etwa Abmessungsäquivalenten Wandscheibe in Holztafelbauweise

Für die in der Praxis verbreitete Holzrahmenbauweise gelten die Standards der in der Holzbaunorm 1052:1988 aufgestellten Grundausführung. Nach dieser Norm konnte ohne rechnerischen Nachweis eine Tragfähigkeit für horizontale Einwirkungen von 4,0 kN unterstellt werden, sofern die Ausführung auf der Grundlage der Einraster-Wandtafel mit folgenden Randbedingungen basierte:

Tafelgröße:I / h = 1.200 mm / 2.500 mm (bis 1.300 mm / 2.600 mm)Nageldicke $d_n = 2,8 \text{ mm}$ Nagelabstand $a_v = 80 \text{ mm}$ undBeplankungt = 12 mm (abhängig vom Rippenabstand: t ≥ b / 50)Rippenquerschnitt b / d = 40 / 80 mm

Diese Randbedingungen werden für ein vergleichendes Beispiel mit den im Forschungsprojekt untersuchten Hybridwänden herangezogen, wobei die Abmessungen der Tafel auf die Hybridwände angepasst und der Rippenquerschnitt auf b / d = 40 / 100 mm vergrößert wird. Die lineare Anpassung der Tafelgröße auf eine 1,5-fache Einrastertafel ist laut der Norm zulässig. Die neuen Abmessungen der Tafel betragen damit 1.800 mm / 2.500 mm, eine Abbildung der Beispieltafel auf Grundlage der DIN 1052-3:1988, Abschnitt 8, Abbildung 2 ist nachfolgend dargestellt.

Abb. 54: Wandscheibe in Tafelbauweise (Prinzipskizze)

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

Nachweise der Wandscheibe

Für die Ermittlung der maximalen Tragfähigkeit der einseitig beplankten Holzrahmenwand werden die Abmessungen wie oben beschrieben angesetzt und aus folgenden Einzelnachweisen die maximale Belastbarkeit $R_{H,d}$ ermittelt.

NW Rippen (Knicknachweis)

$$\begin{split} F_{c,d} &= F_{t,d} = F_{H,d} * h/l \\ \frac{\sigma_{c,0,d}}{k_c \cdot f_{c,0,d}} &= \frac{F_{c,d} / A}{k_c \cdot f_{c,0,d}} = \frac{F_{c,d} / 40 cm^2}{1,0 \cdot 1,45.kN / cm^2} \le 1 \\ F_{c,d} &\le 58,12 \text{ kN} \\ \rightarrow \text{ max } F_{H,d} = F_{c,d} h/l = 41,85 \text{ kN (ohne Auflast)} \end{split}$$

NW Schwellenpressung

$$\begin{split} &\frac{\sigma_{c,0,d}}{k_{c,90} \cdot f_{c,90,d}} = \frac{F_{c,d} / A_{ef}}{k_{c,90} \cdot f_{c,90,d}} = \frac{F_{c,d} / 70 cm^2}{1,25 \cdot 0,173.kN / cm^2} \leq 1 \\ &F_{c,d} \leq 15,14 \ kN \\ & \rightarrow max \ F_{H,d} = F_{c,d} / 0,75 \ * h/l = 14,53 \ kN \ (ohne \ Auflast) \end{split}$$

NW Verbindungsmittel (Schubflussübertragung)

$$f_{v,0,d} = min \begin{cases} k_{v,1} \cdot R_d / a_v & 1,0 \cdot 324,85N / 80mm & 4,06N / mm \\ k_{v,1} \cdot k_{v,2} \cdot f_{v,d} \cdot t &= 1,0 \cdot 0,33 \cdot 4,71N / mm^2 \cdot 12mm &= 18,64N / mm \\ k_{v,1} \cdot k_{v,2} \cdot f_{v,d} \cdot 35 \cdot t^2 / a_r & 1,0 \cdot 0,33 \cdot 4,71N / mm^2 \cdot 35 \cdot 12^2 mm^2 / 600mm & 13,05N / mm \end{cases}$$

 \rightarrow max F_{H,d} = min f_{v.0,d} * I = 4,06 N/mm * 1.800 mm = 7.308 kN

Unter der Annahme, dass die Horizontalbelastung aus Verkehrslast entstammt, ergibt sich aus dem maßgebenden Bemessungswert $F_{H,d}$ = 7.308 kN eine zulässige charakteristische Belastung von $F_{H,k}$ = 4,872 kN

Verformung der Wandscheibe

Am Wandkopf greift in horizontaler Last mit $F_{H,k}$ = 4,872 kN an.

Nachweis Knicken	μ = 0,45
Nachweis Schwellenpressung	$\mu = 0,50$
Nachweis Verbindungsmittel	μ = 1,00 \rightarrow maßgebend \rightarrow max F _{H,k} = 4,782 kN

Berechnung der Wandkopfverschiebung nach DIN 1052:2004 bzw. Erläuterungen zur DIN 1052-2004 von BLAß, H.-J.; EHLBECK, J.; KREUZINGER, H.; STECK, G. (2004) für den **Grenzzustand der Gebrauchstauglichkeit**

Verformungsanteil aus:

Nachgiebigkeit der Verbindungsmittel

 $u_{k,inst} = \frac{F_{H} * a_{v} * 2 * (I + h)}{k_{ser} * I^{2}} = \frac{4.872 \text{ N} * 80 \text{ mm} * 2 * (1.800 + 2.500) \text{ mm}}{870,17 \text{ N/mm} * 1.800^{2} \text{ mm}^{2}} = 1,19 \text{ mm}$

Schubsteifigkeit der Beplankung

 $u_{G,inst} = \frac{F}{G * t} * \frac{h}{I} = \frac{4.872 \text{ N}}{1.080 \text{ N/mm}^2 * 12 \text{ mm}} * \frac{2.500 \text{ mm}}{1.800 \text{ mm}} = 0,52 \text{ mm}$

· Stauchung der Randrippe durch Normalkraft

 $u_{E,inst} = \frac{2}{3} * \frac{F}{E_{0,mean}A} (I + \frac{h^2}{I^2} * h) = \frac{2}{3} * \frac{4.872 \, N}{11.000 \, N/mm^2 * (40 * 100) \, mm^2} (1.800 + \frac{2.500^3}{1.800^2}) \, mm = 0,49 \, mm$

• Pressung des Rähms / der Schwelle im Bereich der Randrippe

 $u_{v,inst} = 2 * v_{90} * \frac{h}{l} * \frac{\sigma_{c,90,k}}{1,2 * k_{c,90}} = 2 * 1,0mm * \frac{2.500 \text{ mm}}{1.800 \text{ mm}} * \frac{0,725 \text{ N/mm}^2}{1,2 * 1,25 * 2,5 \text{ N/mm}^2} = 0,54 \text{ mm}$ $u_{Kopf,k} = (1,19 + 0,52 + 0,49 + 0,54) \text{ mm} = 2,74 \text{ mm} < l/150 = 16,67 \text{ mm}$

Die Berechnung der Wandkopfverschiebung für den **Grenzzustand der Tragfähigkeit** erfolgt nach der gleichen Berechnungsmethode, wobei hier die Bemessungswerte für die Einwirkungen (max $F_{H,d} = 7,308 \text{ kN}$) und sämtliche Baustoffkenngrößen anzusetzen sind, do dass sich hier die Wandkopfverschiebung zu $u_{Kopf,d} = 6,03 \text{ mm}$ ergibt. Der Grenzwert für die Berechenbarkeit nach Theorie 1. Ordnung von $u_{Kopf} \leq I/100 = 25 \text{ mm}$ wird eingehalten.

Zusammenstellung der Ergebnisse

Nachweis	Horizontalkraft	Wandkopfverformung u	Steifigkeit K
GZT	F _{h,d} = 7,308 kN	u _d = 6,0 mm	K _d = 1.211,94 N/mm
GZG	$F_{h,k} = 4,872 \text{ kN}$	u = 2,7 mm	K _k = 1.745,26 N/mm

A 3.4 Modellierung der Schubwände in ANSYS

A 3.4.1 Volumenelemente

Für die mit dem FE-Programm ANSYS[®] durchgeführten numerischen Simulationen der Wandversuche wurden die dort implementierten Standardelemente verwendet. Die Lamellen sowie die Hartholzdübel wurden als 3-D Volumenkörper modelliert und liefern gegenüber planaren Flächen- oder Stabelementen bei entsprechend feiner Vernetzung deutlich realistischere Ergebnisse. Die Vernetzung der zuvor erstellten Volumenkörper, also die Diskretisierung in Elemente und Knoten, erfolgt mittels Volumenelementen des Typs SOLID95 (siehe Abbildung 55 links). Nachteilig für die Verwendung dieses Elementtyps ist der relativ hohe Berechnungsaufwand, welcher sich bei der Abmessung der Wand sowie der feinen Untergliederung der Gesamtstruktur durch die Vielzahl der aneinander gereihten Lamellen, deutlich bemerkbar macht.

Die optimale Vernetzungsfeinheit ist von vielen Parametern abhängig. So ist es zum Beispiel von entscheidender Bedeutung, ob das grobe Tragverhalten oder lokale Stellen mit hohen Spannungsgradienten untersucht werden sollen. Hinsichtlich der vorliegenden Geometriestruktur ist die Anordnung eines dichten, feingliedrigen FE-Netzes unumgänglich. Aufgrund von Voruntersuchungen sowie unter Einhaltung der Forderung nach Elementen mit annähernd gleich langen Seiten, wurde ein FE-Netz mit drei Elementen über die Lamellendicke als ausreichend befunden und somit konnte auch die Gesamtanzahl aller Elemente des Simulationsmodells in einem überschaubaren Rahmen gehalten (siehe Abbildung 55 rechts) werden. Die Modellierung der Schubwände erfolgte parametergesteuert. Die Abmessungen der Wand, sowie die Anordnungen der Stabdübel konnten somit für spätere Modifizierungen leicht abgeändert und anschließend neu berechnet werden.

Abb. 55: Schematische Darstellung des Volumenelementes SOLID45, rechts Anordnung der Volumenelemente

ANSYS[®] stellt zwei unterschiedliche Vernetzungsmethoden zur Verfügung – das "free meshing" und das "mapped meshing" (MÜLLER & GROTH 2007). Beim "free meshing" ist die Berandung der zu vernetzenden Geometrie unwichtig. Das Programm kann die Vernetzung selber vornehmen und Flächen automatisch in Viereck- und Dreieckelemente unterteilen. Das mapped meshing hingegen setzt strenge Voraussetzungen an die Geometrie. Entgegen dem free meshing wird bei dieser Vernetzungsmethode das Modell ausschließlich in Viereck-Elemente (bzw. Quaderelemente) diskretisiert.

Für die Beurteilung der Qualität eines FE-Netzes gilt die Regel, dass "ästhetische" Netze auch gute Ergebnisse liefern. Netzgeneratoren sind heutzutage durchaus in der Lage solche regelmäßigen und qualitativ guten Netze automatisch zu erzeugen. Jedoch stößt man durch die unregelmäßige Geometrie der Lamellen an den Bohrungen schnell an die möglichen Grenzen dieser Vernetzungsmethode. Aus diesem Grunde wurde ein manuelles FE-Netz erzeugt, welches im Bereich der Dübel verfeinert wurde. Gegenüber dem free mesh (linkes Bild) ist beim mapped mesh (rechtes Bild) eine deutlich klarere Struktur und somit eine regelmäßigere Anordnung der Elemente zu verzeichnen. Ein weiterer Vorteil dieser im rechten Bild dargestellten Anordnung ist die deutlich geringere Anzahl an Elementen, was letztendlich der Berechnungsdauer zu gute kommt.

Abb. 56: Vernetzung der Lamellen (links: free meshing, rechts: mapped meshing mit benutzerdefinierten Einstellungen

A 3.4.2 Kontaktelemente

Die Grenzflächen zwischen zwei benachbarten Lamellen sowie die Bereiche zwischen Lamellen und Stabdübel stellen in ANSYS[®] ein Kontaktproblem dar, welches an diesen Stellen mit dreidimensionalen surface-surface Kontaktelementen des Typs CONTA173 und TARGE170 abgebildet wurde. Zur Bildung eines zusammenhängenden Kontaktpaares werden auf der einen Seite des Kontaktes CONTACT-Elemente und auf der gegenüberliegenden Seite TARGET-Elemente benötigt. Die Contact-Seite achtet nunmehr stets darauf, dass ihre Knoten nicht in die Target-Seite eindringen, so dass für die Anordnung der Target-Elemente stets das steifere Volumen gewählt wurde.

Professur Holz- und Mauerwerksbau

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

Abb. 57: Anordnung der Kontaktelemente CONTA173

Zur Lösung von Kontaktproblemen stehen in ANSYS[®] verschiedene Algorithmen zur Verfügung, welche über die Keyoption(2) frei wählbar sind. Im Falle der vorliegenden Untersuchungen wurde auf das Augmented-Lagrange-Verfahren zurückgegriffen. Bei diesem Verfahren handelt es sich um eine iterative Verbesserung der Penaltylösung, bis die exakten Multiplikatoren erreicht sind. Dabei wird zunächst mit dem Penalty-Verfahren der Kontakt bestimmt und anschließend mit dem Lagrange-Verfahren die Durchdringung auf einen bestimmten Wert reduziert. Neben der Wahl der Berechnungsmethode ist die Penetration, also das Eindringung des Kontaktelementes in das Targetelement an den Integrationspunkten, von der Kontaktsteifigkeit abhängig. Höhere Werte für die Steifigkeit des Kontaktes vermindern die Penetrationstiefe, führten bei der Simulation aber oftmals auch zu Konvergenzproblemen. Ein kleinerer Wert hingegen führt zu einer schnelleren Konvergenz, jedoch auch zu mehr Penetration.

Im Falle der numerischen Simulation wurde in Anlehnung an die experimentellen Ergebnisse ein relativer Wert der Fugensteifigkeit von 0,5 gewählt. Dieser kleine Wert für FKN soll den "weichen" Kontakt zwischen den sägerauen Oberflächen der einzelnen Lamellen abbilden und eine kleine Eindringung der beiden in Kontakt tretenden Körper erlauben.

A 3.4.3 Federlemente

Die Einspannung der Versuchswände erfolgte durch Verkeilen und Verschrauben der Lamellen des Brettstapelelementes mit den Stahltraversen am oberen und am unteren Ende des Versuchsrahmens. Eine ideale starre Einspannung ist aus diesem Grund weder in der Praxis noch bei den hier durchgeführten experimentellen Untersuchungen an Holzwandelementen gegeben. In ANSYS kann eine solche elastische Einspannung durch Verwendung von Federelementen an diesen Punkten abgebildet werden. Verwendet wurden hierfür nichtlineare Federelemente des Typs Combin39. Dieses Element erstreckt sich zwischen zwei deckungsgleichen Knoten, besitzt also die Länge Null und wurde über die Vorgabe einer Kraft-Verschiebungskurve definiert.

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen **Ein Einer** Einer Einer Institut für Konstruktiven Ingenieurbau

A 4 Experimentelle Untersuchungen an hybriden Holzverbund-Deckenelementen

A 4.1 Biegetraglastversuche von Deckenelementen

A 4.1.1 Übersicht

Tab. 28: Übersicht über die Varianten der Deckenversuche

Anzahl	Serie	Beschreibung
4	HEV	Holz-Estrich-Verbund-Prüfkörper ohne Faseranteil im Estrich
3	HEV-F5	Holz-Estrich-Verbund-Prüfkörper mit 5 kg Fasern/m ³ Fertigestrich
3	HEV-F10	Holz-Estrich-Verbund-Prüfkörper mit 10 kg Fasern/m ³ Fertigestrich
2	HEV-HF5	Holz-Estrich-Verbund-Prüfkörper mit 5 kg Holzfasern/m ³ Fertigestrich
12		

Deckenelemente

Abb. 58: Geometrie der Probekörper

Abb. 59: Versuchsaufbau Biegeversuche

Nachfolgend sind die Last-Verformungskurven der einzelnen Versuche dargestellt und deren Bruchlasten sowie die ermittelten Bauteilkennwerten in Tabellen zusammengefasst. Die in den Diagrammen aufgetragenen Kräfte beziehen sich dabei auf die gemessenen Zylinderkräfte, so dass sich für die weiterführenden Berechnungen z. B. der Momente und Elastizitätsmoduln die im Vierpunktbiegeversuch wirkenden Einwirkungen zu $F_{V,1} = F_{V,2} = \frac{1}{2} * F_{zylinder}$ ergeben.

A 4.1.2 Serie HEV

A 4.1.2.1 Deckenprobekörper HEV-1

Abb. 60: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-1

A 4.1.2.2 Deckenprobekörper HEV-2

Abb. 61: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-2

A 4.1.2.3 Deckenprobekörper HEV-3

Abb. 62: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-3

A 4.1.2.4 Deckenprobekörper HEV-4

Abb. 63: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-4

A 4.1.3 Serie HEV-F5

A 4.1.3.1 Deckenprobekörper HEV-F5-1

Abb. 64: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-F5-1

A 4.1.3.2 Deckenprobekörper HEV-F5-2

A 4.1.3.3 Deckenprobekörper HEV-F5-3

Abb. 66: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-F5-3

A 4.1.4 Serie HEV-F10

Abb. 67: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-F10-1

A 4.1.4.2 Deckenprobekörper HEV-F10-2

A 4.1.4.3 Deckenprobekörper HEV-F10-3

Abb. 69: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-F10-3

A 4.1.5 Serie HEV-HF5

Abb. 70: Widerstandskraft-Verschiebungs-Diagramm Biegetraglastversuch Deckenprobe HEV-HF5-1

A 4.1.5.2 Deckenprobekörper HEV-HF5-2

A 4.1.6 Gesamtübersicht der Ergebnisse

Abb. 72: Lokale Biegeelastizitätsmoduln der rohen Brettstapelelemente nach DIN EN 408:2004

Brobokörpor	E-Modul E _{m,I}	Mittelwert E-Modul E _{m,I}	
FIODEKOIPEI	[N/mm²]	[N/mm²]	
HEV-1	9.516,32		
HEV-2	10.316,57	10 000 20	
HEV-3	9.718,61	10.000,20	
HEV-4	10.449,51		
HEV-F5-1	9.743,83		
HEV-F5-2	9.835,26	9.590,75	
HEV-F5-3	9.193,17		
HEV-F10-1	10.838,86		
HEV-F10-2	10.307,64	10.416,23	
HEV-F10-3	10.102,19		
HEV-HF5-1	12.894,19	12 574 40	
HEV-HF5-2	12.254,62	12.574,40	

Tab. 29: Lokale Biegeelastizitätsmoduln der rohen Brettstapelelemente nach DIN EN 408:2004

Professur Holz- und Mauerwerksbau

A 4.1.6.2 Steifigkeitsverlust infolge der Lastwechsel

Abb. 73: Steifigkeitsverlust infolge der Lastwechsel

Tab. 30: Steifigkeitsverlust infolge der Lastwechsel

Probekörper	Steifigkeit vor den Lastwechseln	Steifigkeit Bruchversuch	Steifigkeitsverlust
	[kN/mm]	[kN/mm]	[%]
HEV-1	8,048	7,868	2,24
HEV-2	8,660	8,248	4,76
HEV-3	9,266	8,843	4,57
HEV-F5-1	7,854	7,527	4,16
HEV-F5-2	9,314	8,433	9,46
HEV-F5-3	9,460	8,678	8,27
HEV-F10-1	8,853	7,739	12,58
HEV-F10-2	8,195	7,690	6,16
HEV-F10-3	8,590	7,879	8,28

A 4.1.6.3 Ermittlung der Biegesteifigkeiten für starren und ohne Verbund

Die rechnerischen Biegesteifigkeiten einer starr verbundenen sowie einer Holz-Beton-Decke ohne Verbund werden mit den über eine Serie gemittelten Elastizitätsmoduln für Estrich E_1 und Holz E_2 ermittelt.

Probekörperserie		HEV	HEV-F5	HEV-F10	HEV-HF5
h ₁	[cm]	5,22	5,22	5,22	5,00
b ₁	[cm]	52,00	52,00	52,00	52,00
E ₁	[kN/cm ²]	2.720	2.517	2.560	1.750
A ₁	[cm²]	271,24	271,24	271,24	260
I ₁	[cm⁴]	791,90	791,90	791,90	541,67
h ₂	[cm]	9,89	9,89	9,89	11,00
b ₂	[cm]	52,00	52,00	52,00	52,00
E ₂	[kN/cm ²]	1.000	959	1.042	1.257
A ₂	[cm²]	514,22	514,22	514,22	572,00
I ₂	[cm⁴]	4.872,07	4.872,07	4.872,07	5.767,67
Z ₁	[cm]	13,08	13,08	13,08	14,00
Z ₂	[cm]	5,25	5,25	5,25	5,50
ZS	[cm]	9,86	9,80	9,67	8,79
a ₁	[cm]	3,22	3,28	3,41	5,21
a ₂	[cm]	4,61	4,55	4,42	3,29
EI _{m,oV}	[kNcm ²]	7.026.165	6.665.897	7.102.129	8.200.413
EI _{m,starr}	[kNcm ²]	25.604.196	24.220.725	25.640.536	28.336.262

Tab. 31: Biegesteifigkeiten f ür starren und ohne Verbund

Abb. 74: Bezeichnungen am Verbundquerschnitt

Biegesteifigkeit ohne Verbund El_{ov}

 $\mathsf{EI}_{\mathsf{oV}} = \mathsf{E}_1 \cdot \mathsf{I}_1 + \mathsf{E}_2 \cdot \mathsf{I}_2$

Biegesteifigkeit starrer Verbund El_{starr}

$$EI_{starr} = E_1 \cdot I_1 + E_2 \cdot I_2 + E_1 \cdot A_1 \cdot a_1^2 + E_2 \cdot A_2 \cdot a_2^2$$
 mit

$$\mathbf{a}_1 = \mathbf{z}_1 - \mathbf{z}_S$$
 und $\mathbf{a}_2 = \mathbf{z}_S - \mathbf{z}_2$

$$z_{s} = \frac{E_{1} \cdot A_{1} \cdot z_{1} + E_{2} \cdot A_{2} \cdot z_{2}}{E_{1} \cdot A_{1} + E_{2} \cdot A_{2}}$$

A 4.1.6.4 Gegenüberstellung der Biegesteifigkeiten der Verbundelemente

Abb. 75: Biegesteifigkeiten der Verbundelemente für den starren, nachgiebigen und ohne Verbund (Vorversuch links, Biegetraglastversuch rechts)

Brobokörpor	EI _{m,I,Vorversuch}	EI _{m,I,Bruch}	EI _{m,starr}	EI _{m,ohne Verbund}	
FIODEKOIPEI	[kNcm ²]	[kNcm ²]	[kNcm ²]	[kNcm ²]	
HEV-1	20.602.880	16.230.400			
HEV-2	22.169.600	20.633.600	7 026 165	25 604 107	
HEV-3	23.720.960	21.941.760	7.020.105	25.004.197	
HEV-4	19.087.360	19.087.360			
HEV-F5-1	20.106.240	20.049.920			
HEV-F5-2	-2 23.843.840 22.		6.665.898	24.220.725	
HEV-F5-3	24.217.600	19.929.600			
HEV-F10-1	22.663.680	18.480.640			
HEV-F10-2	20.979.200) 15.784.960 7.102.129		25.640.537	
HEV-F10-3	21.990.400	17.433.600			
HEV-HF5-1	-1 26.652.311 26.652.311 8 200		8 200 414	28 336 262	
HEV-HF5-2	24.035.435	24.035.435	0.200.414	20.000.202	

 Tab. 32:
 Biegesteifigkeiten der Verbundelemente für den starren, nachgiebigen und ohne Verbund

Probekörperse	erie	HEV	HEV-F5	HEV-F10	HEV-HF5	Gesamt
E _{Estrich}	[N/mm²]	27.200	25.170	25.600	17.500	23.868
E _{Holz}	[N/mm²]	10.000	9.591	10.420	12.574	10.646
EI _{m,I,Vorversuch} EI _{m,starr}	[%]	86,6	93,8	85,3	89,4	88,8
$\frac{EI_{m,l,Vorversuch}}{EI_{m,ohneVerbund}}$	[%]	315,5	340,9	308,0	309,1	318,4
EI _{m,I,Bruch} EI _{m,starr}	[%]	76,1	86,2	67,2	89,4	78,6
EI _{m,l,Bruch}	[%]	277,2	313,1	242,6	309,1	276,9

Tab. 33: Wirksamkeit des Verbundes im Vergleich der lokalen Biegesteifigkeiten (Serienmittelwerte)

Abb. 76: Bruchlasten und maximale Bruchdurchbiegungen der Verbundelemente

Fuor off Dradhadolor and maximal Dradhadolor of Sanadolor

Brobokörpor	Bruchlast	Bruchdurchbiegung
Рторекогрег	[kN]	[mm]
HEV-1	58,16	81,25
HEV-2	68,41	98,04
HEV-3	61,57	71,32
HEV-4	73,59	88,87
HEV-F5-1	68,84	84,28
HEV-F5-2	74,44	94,57
HEV-F5-3	69,80	92,21
HEV-F10-1	68,35	100,35
HEV-F10-2	61,61	98,64
HEV-F10-3	72,40	98,39
HEV-HF5-1	63,90	123,74
HEV-HF5-2	75,60	140,23

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen Institut für Konstruktiven Ingenieurbau

A 4.2 Vorschlag für ein Bemessungskonzept der Hybriddecken

Das im Folgenden vorgestellte genauere Bemessungskonzept basierend auf den Ausführungen von LEHMANN (2004) und berücksichtigt zusätzlich zu dem im Hauptteil des Forschungsberichtes vorgestellten Verfahren die alternierenden Lamellenhöhen.

Abb. 77: Bezeichnungen am Verbundelement mit alternierenden Lamellenhöhen

A 4.2.1 Ermittlung der wirksamen Biegesteifigkeit

Folglich ermittelt sich das wirksame Flächenmoment 2. Grades I_{ef} unter der Voraussetzung, dass die Spannungsnulllinie im Holzquerschnitt liegt, folgendermaßen:

$$\boldsymbol{I}_{_{ef}} = \boldsymbol{I}_{_{H}} + \boldsymbol{A}_{_{H}} \cdot \boldsymbol{a}_{_{H}}^2 + \boldsymbol{n}_{_{MD}} \cdot \boldsymbol{I}_{_{MD}} + \boldsymbol{\gamma} \cdot \boldsymbol{n}_{_{MD}} \cdot \boldsymbol{A}_{_{MD}} \cdot \boldsymbol{a}_{_{MD}}^2$$

mit

$$\begin{array}{ll} - & I_i = \sum_{i=1}^n \biggl(\frac{b_i \cdot h_i^3}{12} + b_i \cdot h_i \cdot a_i^2 \biggr) \\ - & A_i = \sum_{i=1}^n \bigl(b_i \cdot h_i \bigr) & - & \mbox{Flächen der Teilquerschnitte} \\ - & \gamma_1 \approx 1,0 & - & \mbox{Nachgiebigkeitsfaktor Verbundfuge} \\ - & i & - & \mbox{Zeiger für Einzellamelle} \\ - & n & - & \mbox{Anzahl der Lamellen} \end{array}$$

für die Summe aller Teilquerschnitte i = 1 bis n gilt: $a_{\mu} = \frac{\overline{\gamma} \cdot n_{MD} \cdot A_{MD} \cdot \overline{a}}{\overline{a}}$

$$\mathbf{a}_{\mathrm{H}} = \frac{\gamma \cdot \mathbf{n}_{\mathrm{MD}} \cdot \mathbf{n}_{\mathrm{MD}}}{\overline{\gamma} \cdot \mathbf{n}_{\mathrm{MD}} \cdot \mathbf{A}_{\mathrm{MD}} + \mathbf{A}_{\mathrm{H}}}$$

$$\overline{a} = a_{\text{MD}} + a_{\text{H}} = h - a_{\text{MD,r}} - a_{\text{H,r}}$$

für $a_{H,r}$ und $a_{MD,r}$ gilt folgender Ansatz

$$\mathbf{a}_{r} = \frac{\sum \left(\mathbf{b}_{i} \cdot \mathbf{h}_{i} \cdot \frac{\mathbf{h}_{i}}{2} \right)}{\sum \left(\mathbf{b}_{i} \cdot \mathbf{h}_{i} \right)}$$

$$n_{MD} = \frac{\eta \cdot E_{MD}}{E_{H}} \text{ und } E_{H} = E_{V}$$

 $a_{MD} = \overline{a} - a_{H}$

Abminderungsfaktor Berücksichtigung der Reduktion des η zur Elastizitätsmoduls des Anhydritestrichs, Streuungen der Materialeigenschaften sowie eventuelle auftretende Zwängungen im Bereich der Verbundfuge, incl. Umrechnungsfaktor aus der Ermittlungsart des Elastizitätsmoduls durch Druckversuch hinsichtlich der Beanspruchung durch Biegung im Einsatzbereich

Entsprechend der Ausführungen im Hauptteil dieses Berichtes sind folgende Materialsteifigkeiten in den einzelnen Bemessungszuständen anzusetzen:

Anfangszustand

Anhydrit	$E_{1,0d} = \frac{E_1}{\gamma_A}$			
	mit			
	- E ₁	-	Elastizitätsmod	ul (Mittelwert)
	- γ _Α	-	Teilsicherheitsb	peiwert
	$\gamma_A = 1,8$	-	Anhydritdecksc	hicht ohne Fasern
	$\gamma_A = 1,5$	-	faserbewehrte	Anhydritdeckschicht
• Holz	$E_{2,0d} = \frac{E_{0,mea}}{\gamma_t}$	<u>n</u>		
	mit			
	- E _{0,mean}	-	Elastizitätsmod	ul (Mittelwert)
	- $\gamma_t = 1,3$	-	Teilsicherheitst	peiwert
Endzustand				
Anhydrit	$E_{1,\infty} = \frac{1}{\gamma_{A} \cdot (1 - I)}$	$\frac{E_1}{F\phi_A(t,t_0)}$))	
	- $\phi_A(t,t_0) =$	= 1 ,5	- Kriechza	ahl Anhydrit
• Holz	$E_{2,\infty} = \frac{E_{0}}{\gamma_{t} \cdot (1 + $	$\phi_{t}(t,t_{0})$;	
	mit			
	- $\phi_t(t, t_0) =$	\mathbf{k}_{def}	- Kriechza	ahl Holz nach DIN
			1052:20	008

A 4.2.2 Nachweise im Grenzzustand der Tragfähigkeit

Maßgebende Spannungen:

• Berechnung der unteren Randspannung für den Holzquerschnitt

$$\sigma_{\mathsf{H},\mathsf{m},\mathsf{d}} = \frac{\mathsf{M}_{\mathsf{d}}}{\mathsf{efl}} \cdot \left(\mathsf{a}_{\mathsf{H}} + \mathsf{a}_{\mathsf{H},\mathsf{r}} \right)$$

• Berechnung Zugspannung im Holzschwerpunkt

$$\sigma_{\mathrm{H,t,d}} = \frac{\mathrm{M_{d}}}{\mathrm{efl}} \cdot \mathrm{a_{H}}$$

• Randspannungen an der Oberseite des Estrichs

$$\sigma_{_{MD,m,o,d}} = \frac{M_{_{d}}}{efl} \cdot \left[\overline{\gamma} \cdot \left(- a_{_{MD}} \right) - a_{_{MD,r}} \right] \cdot n_{_{MD}}$$

• Randspannungen an der Unterseite des Estrichs

$$\sigma_{\text{MD,m,u,d}} = \frac{M_{\text{d}}}{efl} \cdot \left[\overline{\gamma} \cdot \left(-a_{\text{MD}} \right) - a_{\text{MD,r}} + h_{\text{MD}} \right] \cdot n_{\text{MD}}$$

Nachweise:

• Anhydritestrich

$$\circ \quad \text{Deckschicht oben} \qquad \frac{\sigma_{A,m,oben,d}}{f_{A,c,d}} \leq 1$$

$$\circ \quad \text{Deckschicht unten} \quad \frac{\sigma_{A,m,\text{unten},d}}{f_{A,t,d}} \leq 1$$

• Holz
$$\frac{\sigma_{\mathrm{H,t,d}}}{f_{\mathrm{t,0,d}}} + \frac{\sigma_{\mathrm{H,m,d}}}{f_{\mathrm{m,y,d}}} \leq 1$$

A 4.2.3 Nachweise im Grenzzustand der Gebrauchstauglichkeit

entsprechend den Ausführungen im Hauptteil des Berichtes

A 4.3 Fotodokumentation

Abb. 78: Deckenelement mit alternierenden Lamellen und seitlichen Einfräsungen als Rohelement (links) und mit Anhydrit-Deckschicht (rechts)

Abb. 79: Im Bereich der größten Horizontalverschiebung aufgetrenntes Plattenelement (links) und nach dem Versuch abgenommenes Anhydritfragment mit eingebetteten Holzfasern der Brettstapelelement-Oberfläche (im Bild rechts unten) und Bereich der ausgefüllten Fräsung als Anhydrit-Nocke (rechts)

Abb. 80: Optische Überwachung des Versuchsablaufes mittels Photogrammetrie an einem Messfeld in Auflagernähe (links) und Diskretisierung mit Finite-Elemente-Methode (rechts) (Aufgrund der Kamerachipausrichtung ist das Bild um 90° im Uhrzeigersinn gedreht dargestellt, die Anhydritschicht befindet sich rechts im Bild)

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 5 Anschluss- und Detailpunkte für hybride Massivholz-Verbundkonstruktionen

Abb. 81: Hybridbauweise: Übersicht

Bauhaus-Universität Weimar

Abb. 83: Hybridbauweise: Anschluss Zwischenwand an Wand in Etagenebene

Bauhaus-Universität Weimar

Abb. 84: Hybridbauweise: Anschluss Wand auf Wand (Etagenstoß) und Decke an Wand

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

Abb. 85: Hybridbauweise: Anschluss Deckenstoß und Anschluss an Wand parallel zur Spannrichtung

Abb. 86: Hybridbauweise: Anschluss letzte Deckenebene und Dach an Drempelwand

Abb. 87: Hybridbauweise: Anschluss Wand an Bodenplatte

A 5.2 Montage und Anschlüsse der Deckenelemente - Alternative Varianten

Die Befestigung der Decken erfolgt auf der Innenseite der Wandköpfe. Die Decken laufen dabei nicht über die tragenden Wände hinweg, um eine Belastung des Holzes quer zur Faser zu vermeiden. Der Anschluss der Decken an die Wand kann auf unterschiedliche Weise erfolgen. Nachstehende Variantenbeschreibung und statische Anhaltswerte sind als Beispiele für eine Spannweite von 5,00 m aufgeführt.

Für die Befestigung der Deckenelemente können Holzschrauben mit Vollgewinde nach DIN 7998 oder mit entsprechender Zulassung auf Zug verwendet werden. Andere Montagemöglichkeiten wären handelsübliche Stahlsonderteile oder individuelle Sonderanfertigungen. Einige Möglichkeiten für Standardbefestigungen werden nachfolgend beschrieben. Sonderlösungen können auf dieser Grundlage leicht entwickelt werden.

Beispiel Deckensystem:

Brettstapelelement mit 16 Stück Lamellen b/h = 4 / 10 cm (Elementbreite 64 cm) Spannweite 5,00 m Dicke Deckenelement: 10 cm Brettstapel, 6 cm Anhydritestrich

Belastung der Decke:

g _{BSE} = 0,10 m * 5,00 kN/m ³ = 0,50 kN/m ²	² Brettstapel
$g_{CA} = 0,06 \text{ m} * 22,00 \text{ kN/m}^3 = 1,32 \text{ kN/m}^2$	² Calciumsulfatestrich
$g_{\text{Deckenverkl}} = 0,11 \text{ kN/m}^2$	² Deckenverkleidung / -dämmung
g _{∨erlegeplatte} = 0,20 kN/m²	² Trittschallentkopplung + Verlegeplatte
g _{FuBobelag} = <u>0,22 kN/m²</u>	E Fußbodenbeläge
$g_{k} = 2,35 \text{ kN/m}^{2}$	² Summe Eigenlasten
q _k = 2,00 kN/m ²	² Verkehrslast

p_d = 1,35 * 2,35 kNm² + 1,50 * 2,0 kN/m² = 6,17 kN/m²

Schnittgrößen:

$$\begin{split} M_{y,d} &= 6,17 \text{ kN/m}^2 * (5,00 \text{ m})^2 / 8 = 19,28 \text{ kNm} \\ F_A &= 5,00 \text{ m} * 6,17 \text{ kN/m}^2 / 2 = 15,43 \text{ kN/m} \\ \text{Auflagerkraft je Deckenelement: } F_{A,Element} = 15,43 \text{ kN/m} * 0,64 \text{ m} = 9,88 \text{ kN} \end{split}$$

A 5.2.1 Befestigung mit Bozett[®] Balken-Z-Profil

Bozett Balken-Z-Profile sind laut Herstellerangaben X aus stranggepreßtem Aluminium (Alu-SK) oder aus verzinktem Stahlblech (Stahl-SK) und in einbaufertigen, vorgelochten Abschnitten in den Standardbreiten 60, 80 und 100 mm oder bei Alus-SK als Halbzeug mit 1.150 mm Länge lieferbar. Die Materialqualitäten werden bei Alu-SK als ALMgSi 1 und bei Stahl-SK als Stahl S355 JR mit galvanischer Verzinkung angegeben.

Balken-Z-Profile sind für Deckenbalken-, Pfetten- und Sparrenmontage vorgesehen. Die einfache Auflagerung auf den Hauptträger aus Holz bzw. Mauerwerk, Beton oder Stahl ermöglicht eine Bauzeitverkürzung. Für die Montage wird dabei im Nebenträger ein Schlitz z.B. mit einer Kreissäge oder einem Kettenstemmer eingebracht. Danach werden die Stabdübellöcher in die Unterseite des Trägers gebohrt. Das Einlassen des aufrechten Steges ist nur für geschlossene Fugen erforderlich. Das SK-Profil wird spannungsfrei eingeschoben und mit Stabdübeln fixiert. Nach der Auflagerung des Nebenträgers auf den Hauptträger erfolgt eine konstruktive Lagesicherung mit Nägeln bzw. Schrauben. Das

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen Einsteat für Konstruktiven Ingenieurbau

Balken-Z-Profil kann mit Anlage gegen Hirnholz montiert werden (siehe Abb. 1) oder im Hirnholz eingefalzt werden (siehe Abb. 2).

Für die Montage der Brettstapel-Deckenelemente an den Wandelementen können die Bozett® Alu-SK 96/60 Profile eingesetzt werden. Dabei ist die Profilhöhe mit 96 mm etwas geringer als das Brettstapelelement und kann somit oberflächenbündig eingebaut werden. Da die Decke eine unterseitige Verkleidung aus Mineralwolle und Gipskarton bekommt, ist der Brandschutz für das Befestigungsmittel erfüllt. Bei Decken in Sichtqualität kann der Anker eingeschlitzt werden, dann muss jedoch die Holzdicke der Decke erhöht oder die Montagefuge der Wände modifiziert werden.

Im Bereich der Wandelemente wird das Z-Profil passgenau in die BFU-Kopfplatte des Wandelementes eingelassen, so dass es komplett durch die BFU-Fußplatte der nächsten Wand verdeckt wird.

- zwei Bozett- Profile je Element und Seite F_{Profil} = F_{A.Element} / 2 = 9,88 / 2 = 4,94 kN
- → Nachweis auf Flächenpressung des Holzes (Deckenelement mit Kraft-Faser-Winkel 90°) $\sigma_{c,90,d} \le k_{mod} * k_{c,90} * f_{c,90,k} = 0.8 * 1.0 * 2.5 \text{ N/mm}^2 = 2.0 \text{ N/mm}^2$ $A_{ef} \ge F_{Profil} / \sigma_{c.90,d} = 4.940 \text{ N} / 2.0 \text{ N/mm}^2 = 2.470 \text{ mm}^2$

Bozett SK 96 / 60 mm → Auflagerfläche Deckenelement auf SK-Profil SK-Profil-Breite variabel, bei gewähltem Profil SK 96 / 60 → B = 60 mm SK-Profil-Auflagerlänge 60 mm zzgl. wirksame Querdrucklänge 30 mm A_{ef} = b_{Sk} * (60 mm + 30 mm) = 60 mm * 90 mm = 5.400 mm² > A_{eff} = 2.470 mm²

A 5.2.2 Befestigung mit Hakenanker (ähnlich JANEBO ® Hakenplatten)

Abb. 89: Hakenanker

Hakenplatte mit 2 Stabdübeln Ø 12 mm Tragfähigkeit Stabdübel

$$\begin{split} &\mathsf{R}_{d,\text{SIDU}} = \mathsf{k}_{1} * \mathsf{k}_{2} * \sqrt{2 * \mathsf{M}_{y,d} * \mathsf{f}_{h,d} * \mathsf{d}} \\ &\mathsf{k}_{1} = \sqrt{2} \\ &\mathsf{k}_{2} = \mathsf{t}_{ef} / \mathsf{t}_{req} \\ &\mathsf{M}_{yd} = 1 / \gamma_{\mathsf{M}} * 0.3 * \mathsf{f}_{\mathsf{u},\mathsf{k}} * \mathsf{d}^{2.6} = 1 / 1.1 * 0.3 * 300 \text{ N/mm}^{2} * 12^{2.6} \text{mm}^{3} = 52.326 \text{ Nmm} \\ &\mathsf{f}_{h,d} = \mathsf{k}_{mod} / \gamma_{\mathsf{M}} * 0.082 * (1 - 0.01d) * \rho = 0.8 / 1.1 * 0.082 * (1 - 0.01 * 12) * 350 \text{ kg/m}^{3} \\ &\mathsf{f}_{h,d} = 18.37 \text{ N/mm}^{2} \\ &\mathsf{t}_{req} = 1.15 * \left(2 + \sqrt{2}\right) * \sqrt{\frac{\mathsf{M}_{y,d}}{\mathsf{f}_{h,d} * \mathsf{d}}} = 3.25 * \sqrt{\frac{52.326 \text{ Nmm}}{18.37 \text{ N/mm}^{2} * 12 \text{ mm}}} = 50.11 \text{ mm} \\ &\mathsf{k}_{2} = \mathsf{t}_{ef} / \mathsf{t}_{req} = 50.11 \text{ mm} / 35 \text{ mm} = 0.70 \\ &\mathsf{R}_{d,\text{StDU}} = \mathsf{k}_{1} * \mathsf{k}_{2} * \sqrt{2 * \mathsf{M}_{y,d} * \mathsf{f}_{h,d} * \mathsf{d}}} = \sqrt{2} * 0.70 * \sqrt{2 * 52.326 * 18.37 * 12} = 4.755 \text{ N} \\ &\mathsf{R}_{\text{StDU,Hakenplatte}} = 2 * \mathsf{R}_{d,\text{StdU}} = 2 * 4.755 \text{ kN} = 9.51 \text{ kN} < \mathsf{F}_{A,\text{Element}} = 4.94 \text{ kN} \end{split}$$

Hakenplatte mit 10 Sondernägel 4 x 50 mm

Tragfähigkeit Sondernägel

$$\begin{split} &\mathsf{R}_{d,\text{Na}} = \mathsf{k}_1 * \mathsf{k}_2 * \sqrt{2 * \mathsf{M}_{y,d} * \mathsf{f}_{h,d} * \mathsf{d}} \\ &\mathsf{k}_1 = 1 \\ &\mathsf{k}_2 = \mathsf{t}_{ef} / \mathsf{t}_{req} = 1 \\ &\mathsf{t}_{req} = 9 \; \mathsf{d} = 9 * 4 \; \text{mm} = 36 \; \text{mm} \Rightarrow \text{Nagellänge } 40 \; \text{mm} + 10 \; \text{mm} = 50 \; \text{mm} \\ &\mathsf{M}_{yd} = 1 / \gamma_{\mathsf{M}} * 0.3 * \mathsf{f}_{u,k} * \mathsf{d}^{2,6} = 1 / 1.1 * 0.3 * 600 \; \text{N/mm}^2 * 4^{2,6} \text{mm}^3 = 6.015 \; \text{Nmm} \\ &\mathsf{f}_{h,d,nv} = \mathsf{k}_{mod} / \gamma_{\mathsf{M}} * 0.082 * \rho * \mathsf{d}^{-0.3} = 0.8 / 1.1 * 0.082 * 350 \; \text{kg/m}^3 * 4^{-0.3} \; \text{mm} \\ &\mathsf{f}_{h,d,nv} = 11.65 \; \text{N/mm}^2 \\ &\mathsf{R}_{d,\text{Na}} = \mathsf{k}_1 * \mathsf{k}_2 * \sqrt{2 * \mathsf{M}_{y,d} * \mathsf{f}_{h,d} * \mathsf{d}} = 1 * 1 * \sqrt{2 * 6.015 * 11.65 * 4} = 749 \, \text{N} \\ &\mathsf{R}_{\text{Na},\text{Hakenplate}} = 8 * \; \mathsf{R}_{d,\text{Na}} = 8 * 0.75 \; \text{kN} = 6.00 \; \text{kN} < \mathsf{F}_{\text{A,Element}} = 4.94 \; \text{kN} \end{split}$$

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen Institut für Konstruktiven Ingenieurbau

A 5.2.3 Befestigung mit Holzschrauben

Holzschrauben mit Vollgewinde nach DIN 7998: 8 x 150 mm, (3.6) nicht vorgebohrt oder Spezialschrauben mit entsprechender Zulassung (SPAX, HECO SFS oder ähnlich).

Die Schrauben werden zu gleichen Teilen in beiden zu verbindenden Holzteilen eingeschraubt bzw. so, dass die effektive Länge mindestens in jedem Holzteil verankert ist. Die Lastabtragung erfolgt in Schraubenlängsrichtung über das Gewinde, Nachzuweisen ist die Verankerungskraft des Gewindes nach DIN 1052-2004 und die Schraubenfestigkeit. Kopfdurchziehen wird in diesem Fall nicht maßgebend. Bei Schrauben mit Zulassung ist der Nachweis nach dieser zu führen. Die Verschraubung erfolgt mit 45° zur Faserrichtung jeweils in horizontaler und vertikaler Richtung.

Abb. 90: Prinzipdarstellung Befestigung mit Vollgewindeschrauben

• 3 Schrauben je Element und Seite F_{Schraube} = F_{A,Element} / 3 = 9,88 kN / 3 = 3,293 kN

> Schrauben mit Gewinde nach DIN 7998 \rightarrow Tragfähigkeitsklasse 2A $f_{1,k} = 70 * 10^{-6} * \rho_k^2 = 70 * 10^{-6} * (350 \text{ kg/m}^3)^2 = 8,58 \text{ N/mm}^2$ Verankerung des Gewindes im Holz unter einem Winkel von $\alpha = 45^{\circ}$ Anteil des Gewindes im Holz: I_{ef} = 75 mm

$$R_{ax,1,d} = \frac{k_{mod}}{\gamma_{M}} * \frac{f_{1,k} * d * I_{ef}}{\sin^{2} \alpha + 3/4 * \cos^{2} \alpha}$$

$$R_{ax,1,d} = \frac{0.8}{1.25} * \frac{8.58 \text{ N/mm}^{2} * 8 \text{ mm} * 75 \text{ mm}}{\sin^{2} 45^{\circ} + 3/4 * \cos^{2} 45^{\circ}} = 3.765 \text{ N}$$

Tragfähigkeit der Schraube (im Bereich des Gewindekerns)

$$\begin{split} &\mathsf{R}_{\text{ax,Schr,d}} = (\mathsf{k}_{\text{mod}} / \gamma_{\mathsf{M}})^* (75^* \pi^* \mathsf{d}_{\text{kern}}^2) \\ &\mathsf{R}_{\text{ax,Schr,d}} = (\mathsf{k}_{\text{mod}} / \gamma_{\mathsf{M}})^* (75^* \pi^* (0,70^* \mathsf{d}_{\text{Nenn}})^2) \text{ für Schrauben d} < 10 \text{ mm} \\ &\mathsf{R}_{\text{ax,Schr,d}} = (0.8 / 1,1)^* (75^* \pi^* (0,70^* 8 \text{ mm})^2) = 6.169 \text{ N} \end{split}$$

Nachweis

 $\begin{array}{l} \mathsf{R}_{\text{ax,1,d}} < \mathsf{R}_{\text{ax,2,d}} \twoheadrightarrow \mathsf{Nachweis\ mit\ } \mathsf{R}_{\text{ax,1,d}} \\ 4 * \mathsf{R}_{\text{ax,1,60^\circ,d}} + 4 * \mathsf{R}_{\text{ax,1,90^\circ,d}} = 4 * 4,686 \ \mathsf{kN} + 4 * 4,393 \ \mathsf{kN} = 36,32 \ \mathsf{kN} \\ \mathsf{F}_{\text{ax,d}} / \mathsf{R}_{\text{ax, d}} = 32,00 \ \mathsf{kN} / 36,32 \ \mathsf{kN} = 0,88 < 1 \twoheadrightarrow \mathsf{Nachweis\ erfüllt} \end{array}$

A 6 Betrachtung bauphysikalischer Aspekte

A 6.1 Berechnung des Wärmedurchgangskoeffizienten U

A 6.1.1 Wandquerschnitt in Massivbauweise

Oshisht	Dicke Wärmeleitfähigkeit		Wärmedurchlasswiderstand	Wärmedurch- gangskoeffizient
Schicht	d	λ	R	U = 1/R _T
	[mm]	[W/mK]	[m²K/W]	[W/m²K]
Wärmeübergang innen			0,13	
Gipsputz	15	0,51	0,03	
Kalkstein- Mauerwerk	175	0,7	0,25	
Mineralwolle	60	0,04	1,50	
Kalk-Zement- Außenputz	5	1	0,01	
Wärmeübergang außen			0,04	
Summe	255		R _T = 1,95	0,51

A 6.1.2 Wandquerschnitt in Hybridbauweise

Schicht	Dicke	Wärmeleitfähigkeit	Wärmedurchlasswiderstand	Wärmedurch- gangskoeffizient
	d	λ	R	U = 1/R _⊺
	[mm]	[W/mK]	[m²K/W]	[W/m²K]
Wärmeübergang innen			0,13	
Anhydrit	45	1,2	0,04	
Holz	100	0,13	0,77	
WDVS (Pavatex- Diffutherm)	100	0,045	2,22	
Kalk-Zement- Außenputz	10	1	0,01	
Wärmeübergang außen			0,04	
Summe	255		R _T = 3,21	0,31

A 6.1.3 Wandquerschnitt in Holzständerbauweise

Oshisht	Dicke	Wärmeleitfähigkeit	Wärmedurchlasswiderstand	Wärmedurch- gangskoeffizient
Schicht	d	λ	R	U = 1/R _T
	[mm]	[W/mK]	[m²K/W]	[W/m²K]
Wärmeübergang			0.13	
innen			0,13	
OSB 3 innen	20	0,13	0,15	
WDVS (Isofloc)	160	0,04	4,00	
WDVS				
(Pavatex-	65	0,045	1,44	
Diffutherm)				
Kalk-Zement-	10	1	0.01	
Außenputz	10	I	0,01	
Wärmeübergang			0.04	
außen			0,04	
Summe	255		R _T = 5,78	0,17

A 6.2 Diffusionsberechnung (Glaser-Verfahren nach DIN 4108-3)

Schicht	d	μ	Sd	$\Sigma \; \mathbf{S}_{d}$	λ	R	θ	ps	pi
Schicht	[mm]	[m]	[m]	[m]	a b b b p p [W/mK] [m²K/W] [°C] [Pa] [Pa] 20,0 2.338 1.1 0,13 18,0 2.065 5 0,51 0,03 17,6 2.007 5 0,7 0,25 13,7 1.570 1 0,04 1,50 -9,3 276	[Pa]			
				0			20,0	2.338	1.169
Wärmeübergang innen			0	0		0,13	18,0	2.065	
Gipsputz	15	10	0,15	0,15	0,51	0,03	17,6	2.007	
Kalkstein- Mauerwerk	175	40	7,5	7,65	0,7	0,25	13,7	1.570	
Mineralwolle	60	1	0,06	7,71	0,04	1,50	-9,3	276	
Kalk-Zement- Außenputz	5	25	0,125	7,835	1	0,01	-9,4	274	
Wärmeübergang außen				7,835		0,04	-10,0	260	208
Summe	255					1,95			

A 6.2.1 Wandquerschnitt in Massivbauweise

Abb. 91: Glaser-Diagramm (Tauperiode) für den Wandquerschnitt in Massivbauweise

Abb. 92: Temperaturverlauf für den Wandquerschnitt in Massivbauweise

A 6.2.2 Wandquerschnitt in Hybridbauweise

Schicht	d	μ	Sd	$\Sigma \mathbf{S}_{d}$	λ	R	θ	ps	pi
Schicht	[mm]	[m]	[m]	[m]	[W/mK]	[m ² K/W]	[°C]	[Pa]	[Pa]
				0			20,0	2.338	1.169
Wärmeübergang innen			0	0		0,13	18,8	2.168	
Anhydrit	45	25	1,125	1,125	1,2	0,04	18,4	2.121	
Holz	100	40	4	5,125	0,13	0,77	11,2	1.335	
WDVS (Pavatex- Diffutherm)	100	5	0,5	5,625	0,045	2,22	-9,5	271	
Kalk-Zement- Außenputz	10	25	0,25	5,875	1	0,01	-9,6	269	
Wärmeübergang außen				5,875		0,04	-10,0	260	208
Summe	255					3,21			

Abb. 93: Glaser-Diagramm (Tauperiode) für den Wandquerschnitt in Hybridbauweise

Abb. 94: Temperaturverlauf für den Wandquerschnitt in Hybridbauweise

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen

A 6.2.3	Wandquerschnitt in Holzständerbauweise
---------	--

Schicht	d	μ	Sd	$\Sigma \mathbf{S}_{d}$	λ	R	θ	ps	pi
Schicht	[mm]	[m]	[m]	[m]	[W/mK]	[m ² K/W]	[°C]	[Pa]	[Pa]
				0			20,0	2.338	1.169
Wärmeübergang			0	0		0.12	10.2	2 242	
innen			0	0		0,13	19,5	2.242	
OSB 3 innen	20	50	1	1	0,13	0,15	18,5	2.134	
WDVS (Isofloc)	160	2	0,32	1,32	0,04	4,00	-2,2	508	
WDVS (Pavatex- Diffutherm)	65	5	0,325	1,645	0,045	1,44	-9,7	266	
Kalk-Zement- Außenputz	10	25	0,25	1,895	1	0,01	-9,8	265	
Wärmeübergang				1 805		0.04	10.0	260	208
außen				1,095		0,04	-10,0	200	200
Summe	255					5,78			

Abb. 95: Glaser-Diagramm (Tauperiode) für den Wandquerschnitt in Holzständerbauweise

Abb. 96: Temperaturverlauf für den Wandquerschnitt in Holzständerbauweise

A 6.3 Instationäre Berechung mit dem Simulationsprogramm Delphin

A 6.3.1 Randbedingungen für die Berechnung

Das Innenklima wird durch Sinus-Funktionen für Temperatur und relative Luftfeuchte mit einer Periodendauer von einem Tag beschrieben. Ausgehend von einem Mittelwert von 19°C schwankt die Temperatur über den Tag um eine Amplitude von 4 K. Ähnlich verhält es sich bei der relativen Luftfeuchtigkeit, wo der Mittelwert der Feuchte mit 50% und die Amplitude mit 10% angenommen werden.

Abb. 97: Randbedingungen Innenklima

Das Simulationsprogramm enthält basierend auf langjährigen meteorologischen Messdaten einige Referenzklimate für verschiedene Gebiete der Welt. Im vorliegenden Fall wurde für die Berechnung das Referenzaußenklima für das Gebiet von Mitteldeutschland zugrunde gelegt, welches durch Funktionen der Temperatur und relativer Luftfeuchte beschrieben wird.

Abb. 98: Randbedingungen Außenklima

Entsprechend nachfolgender Abbildung für die Berechnung der Hybridbauweise werden der innersten Wandschicht – in diesem Falle dem Anhydrit – die Randbedingungen des Innenklimas zugewiesen. Analog dieser Vorgehensweise verfährt man für die äußerste Wandschicht, hier den Kalk-Zement-Außenputz, welcher mit den Klimafunktionen des Außenklimas belastet wird. Des Weiteren wird die Diskretisierung des Hybridwandelements bestehend aus Anhydrit (rosa), Holz (gelb), Wärmedämmverbundsystem (grün) und Kalk-Zement-Außenputz gut sichtbar. Anhand dieser Eingangsdaten können die sich einstellenden Verläufe für Temperatur und Dampfdruck über die Zeit und Wanddicke simuliert werden.

Abb. 99: (rechts)

A 6.3.2 Ergebnisse für den Wandquerschnitt in Massivbauweise

Abb. 100: Temperaturverlauf über den Wandquerschnitt in Massivbauweise zu bestimmten Zeitpunkten

Abb. 101: Dampfdruckverlauf über den Wandquerschnitt in Massivbauweise zu bestimmten Zeitpunkten

Abb. 102: Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten

Bauhaus-Universität Weimar Fakultät Bauingenieurwesen Institut für Konstruktiven Ingenieurbau

A 6.3.3 Ergebnisse für den Wandquerschnitt in Hybridbauweise

Abb. 103: Temperaturverlauf über den Hybridwandquerschnitt zu bestimmten Zeitpunkten

Abb. 104: Dampfdruckverlauf über den Hybridwandquerschnitt zu bestimmten Zeitpunkten

Abb. 105: Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten

A 6.3.4 Ergebnisse für den Wandquerschnitt in Holzständerbauweise

Abb. 106: Temperaturverlauf über den Wandquerschnitt in Holzständerbauweise zu bestimmten Zeitpunkten

Abb. 107: Dampfdruckverlauf über den Wandquerschnitt in Holzständerbauweise zu bestimmten Zeitpunkten

Abb. 108: Differenz von Satt- und tatsächlichen Dampfdruck zu bestimmten Zeitpunkten